Skip to main content

Advertisement

Log in

The In-situ Growth NiFe-layered Double Hydroxides/g-C3N4 Nanocomposite 2D/2D Heterojunction for Enhanced Photocatalytic CO2 Reduction Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A tightly 2D/2D heterojunction of g-C3N4(g-CN)/NiFe-layered double hydroxides (NiFe-LDH) was prepared in situ. The proper band-gap matching between NiFe-LDH and g-CN increased the transfer pathway of photogenerated electrons and holes between semiconductors. This in turn effectively reduced the recombination rate of photogenerated electrons and holes. Meanwhile, addition of g-CN to the matrix modified the surface morphology of NiFe-LDH and prevented agglomeration of two-dimensional materials while increased their ductility. Moreover, specific area of NiFe-LDH was found 3.06 times larger for 5:1-NiFe-LDH/0.8 g-CN as compared to 5:1-NiFe-LDH. The larger surface area results in availability of multiple reaction sites for the reduction of CO2. Upon exposure to light for 4 h, the product revealed 55.79 μmol/g and 20.45 μmol/g efficiency for CO and CH4 respectively, which was 3.57 times higher than pure NiFe-LDH and 4.25 times higher than pure g-CN. Furthermore, the product revealed as high as 73.2% selectivity for CO. Results authenticate the prepared g-CN containing NiFe-LDH as highly stable, efficient and selective two-dimensional materials for CO2 reduction upon exposure to light.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB (2007) Proc Natl Acad Sci 104:10288–10293

    PubMed  CAS  Google Scholar 

  2. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci 103:15729–15735

    PubMed  CAS  Google Scholar 

  3. El-Khouly ME, El-Mohsnawy E, Fukuzumi S (2017) J Photochem Photobiol, C 31:36–83

    CAS  Google Scholar 

  4. Tu W, Zhou Y, Zou Z (2014) Adv Mater 26:4607–4626

    PubMed  CAS  Google Scholar 

  5. Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O (2013) J Am Chem Soc 135:4596–4599

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Liu C, Dasgupta NP, Yang P (2013) Chem Mater 26:415–422

    Google Scholar 

  7. Zhu W, Zhang C, Li Q, Xiong L, Chen R, Wan X, Wang Z, Chen W, Deng Z, Peng Y (2018) Appl Catal B 238:339–345

    CAS  Google Scholar 

  8. Xu Y, Li A, Yao T, Ma C, Zhang X, Shah JH, Han H (2017) Chemsuschem 10:4277–4305

    PubMed  CAS  Google Scholar 

  9. Billo T, Fu FY, Raghunath P, Shown I, Chen WF, Lien HT, Shen TH, Lee JF, Chan TS, Huang KY (2018) Small 14:1702928

    Google Scholar 

  10. Ye S, Ding C, Liu M, Wang A, Huang Q, Li C (2019). Adv Mater. https://doi.org/10.1002/adma.201902069

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim D, Sakimoto KK, Hong D, Yang P (2015) Angew Chem Int Ed 54:3259–3266

    CAS  Google Scholar 

  12. Guo Z, Cheng S, Cometto C, Anxolabéhère-Mallart E, Ng S-M, Ko C-C, Liu G, Chen L, Robert M, Lau T-C (2016) J Am Chem Soc 138:9413–9416

    PubMed  CAS  Google Scholar 

  13. Jiang Z, Sun W, Miao W, Yuan Z, Yang G, Kong F, Yan T, Chen J, Huang B, An C (2019) Advanced Science 6(15):1900289

    PubMed  PubMed Central  Google Scholar 

  14. Hao L, Kang L, Huang H, Ye L, Han K, Yang S, Yu H, Batmunkh M, Zhang Y, Ma T (2019) Adv Mater 31:1900546

    Google Scholar 

  15. Fang B, Bonakdarpour A, Reilly K, Xing Y, Taghipour F, Wilkinson DP (2014) ACS Appl Mater Interfaces 6:15488–15498

    PubMed  CAS  Google Scholar 

  16. Aziz M, Jalil A, Triwahyono S, Ahmad A (2015) Green Chem 17:2647–2663

    CAS  Google Scholar 

  17. Guo S, Zhang H, Chen Y, Liu Z, Yu B, Zhao Y, Yang Z, Han B, Liu Z (2018) ACS Catalysis 8:4576–4581

    CAS  Google Scholar 

  18. Richard AR, Fan M (2017) ACS Catalysis 7:5679–5692

    CAS  Google Scholar 

  19. Oshima T, Ichibha T, Qin KS, Muraoka K, Vequizo JJM, Hibino K, Kuriki R, Yamashita S, Hongo K, Uchiyama T (2018) Angew Chem Int Ed 57:8154–8158

    CAS  Google Scholar 

  20. Li K, An X, Park KH, Khraisheh M, Tang J (2014) Catal Today 224:3–12

    CAS  Google Scholar 

  21. Zhou C, Shi R, Shang L, Wu LZ, Tung CH, Zhang T (2018) Nano Research 11(6):3462–3468

    CAS  Google Scholar 

  22. Shan J, Raziq F, Humayun M, Zhou W, Qu Y, Wang G, Li Y (2017) Appl Catal B 219:10–17

    CAS  Google Scholar 

  23. Yuan L, Xu YJ (2015) Appl Surf Sci 342:154–167

    CAS  Google Scholar 

  24. Wang J-C, Zhang L, Fang W-X, Ren J, Li Y-Y, Yao H-C, Wang J-S, Li Z-J (2015) ACS Appl Mater Interfaces 7:8631–8639

    PubMed  CAS  Google Scholar 

  25. Jia J, Wang H, Lu Z, O’Brien PG, Ghoussoub M, Duchesne P, Zheng Z, Li P, Qiao Q, Wang L (2017) Advanced Science 4:1700252

    PubMed  PubMed Central  Google Scholar 

  26. Ola O, Maroto-Valer MM (2015) J Photochem Photobiol, C 24:16–42

    CAS  Google Scholar 

  27. Jiang H (2018) Katsumata K-i, Hong J, Yamaguchi A, Nakata K, Terashima C, Matsushita N, Miyauchi M, Fujishima A. Appl Catal B 224:783–790

    CAS  Google Scholar 

  28. Song Y-F, Tan L, Xu S-M, Wang Z, Xu Y, Wang X, Hao X, Bai S, Ning C, Wang Y (2019) Angew Chem 131(34):11986–11993

    Google Scholar 

  29. Chen G, Gao R, Zhao Y, Li Z, Waterhouse GI, Shi R, Zhao J, Zhang M, Shang L, Sheng G (2018) Adv Mater 30:1704663

    Google Scholar 

  30. Yang Y, Wu J, Xiao T, Tang Z, Shen J, Li H, Zhou Y, Zou Z (2019) Appl Catal B 255:117771

    CAS  Google Scholar 

  31. Jia X, Zhang X, Rui N, Hu X (2019) Liu C-j. Appl Catal B 244:159–169

    CAS  Google Scholar 

  32. Xu L, Wang F, Chen M, Nie D, Lian X, Lu Z, Chen H, Zhang K, Ge P (2017) Int J Hydrogen Energy 42:15523–15539

    CAS  Google Scholar 

  33. Mateo D, Albero J, García H (2018) Appl Catal B 224:563–571

    CAS  Google Scholar 

  34. Jia X, Zhao Y, Chen G, Shang L, Shi R, Kang X, Waterhouse GI, Wu LZ, Tung CH, Zhang T (2016) Advanced Energy Materials 6:1502585

    Google Scholar 

  35. Wang Q, Shang L, Shi R, Zhang X, Zhao Y, Waterhouse GI, Wu LZ, Tung CH, Zhang T (2017) Advanced Energy Materials 7:1700467

    Google Scholar 

  36. Porosoff MD, Yan B, Chen JG (2016) Energy Environ Sci 9(1):62–73

    CAS  Google Scholar 

  37. Nayak S, Mohapatra L, Parida K (2015) Journal of Materials Chemistry A 3(36):18622–18635

    CAS  Google Scholar 

  38. Zhang R, Li P, Wang F, Ye L, Gaur A, Huang Z, Zhao Z, Bai Y, Zhou Y (2019) Appl Catal B 250:273–279

    CAS  Google Scholar 

  39. Kong L, Ji Y, Dang Z, Yan J, Li P, Li Y, Liu S (2018) Adv Func Mater 28:1800668

    Google Scholar 

  40. Xu J, Fujitsuka M, Kim S, Wang Z, Majima T (2019) Appl Catal B 241:141–148

    CAS  Google Scholar 

  41. Wang Y, Zeng Y, Wan S, Cai W, Song F, Zhang S, Zhong Q (2018) ChemCatChem 10:4578–4585

    CAS  Google Scholar 

  42. Wang Y, Xia Q, Bai X, Ge Z, Yang Q, Yin C, Kang S, Dong M, Li X (2018) Appl Catal B 239:196–203

    CAS  Google Scholar 

  43. Rather RA, Khan M, Lo IMC (2018) J Catal 366:28–36

    CAS  Google Scholar 

  44. Bhosale R, Jain S, Vinod CP, Kumar S, Ogale S (2019) ACS Appl Mater Interfaces 11:6174–6183

    PubMed  CAS  Google Scholar 

  45. Tonda S, Kumar S, Bhardwaj M, Yadav P, Ogale S (2018) ACS Appl Mater Interfaces 10(3):2667–2678

    PubMed  CAS  Google Scholar 

  46. Iguchi S, Teramura K, Hosokawa S, Tanaka T (2015) Catal Today 251:140–144

    CAS  Google Scholar 

  47. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Angew Chem Int Ed 52(29):7372–7408

    CAS  Google Scholar 

  48. Bai S, Yin W, Wang L, Li Z, Xiong Y (2016) RSC advances 6(62):57446–57463

    CAS  Google Scholar 

  49. Shi R, Waterhouse GI, Zhang T (2017) Solar Rrl 1(11):1700126

    Google Scholar 

  50. Wang L, Jin P, Duan S, She H, Huang J, Wang Q (2019) Science Bulletin 64(13):926–933

    CAS  Google Scholar 

  51. Iguchi S, Hasegawa Y, Teramura K, Hosokawa S, Tanaka T (2016) Journal of CO2 Utilization 15:6–14

    CAS  Google Scholar 

  52. Wang Z, Teramura K, Hosokawa S, Tanaka T (2015) Appl Catal B 163:241–247

    CAS  Google Scholar 

  53. Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) Nano Lett 9(2):731–737

    PubMed  CAS  Google Scholar 

  54. Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J (2013) Nanoscale 5(18):8326–8339

    PubMed  CAS  Google Scholar 

  55. Rawool SA, Pai MR, Banerjee AM, Arya A, Ningthoujam RS, Tewari R, Bharadwaj SR (2018) Appl Catal B 221:443–458

    CAS  Google Scholar 

  56. Zhang Z, Huang J, Zhang M, Yuan Q, Dong B (2015) Appl Catal B 163:298–305

    CAS  Google Scholar 

  57. Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y, Ho WK (2013) ACS Appl Mater Interfaces 5(21):11392–11401

    PubMed  CAS  Google Scholar 

  58. Karamian E, Sharifnia S (2016) Journal of CO2 Utilization 16:194–203

    CAS  Google Scholar 

  59. Koci K, Obalova L, Solcova O (2010) Chemical and Process Engineering 31:395–407

    CAS  Google Scholar 

  60. Tan SS, Zou L, Hu E (2008) Catal Today 131(1–4):125–129

    CAS  Google Scholar 

  61. Liu L, Li Y (2014) Aerosol Air. Qual Res 14(2):453–469

    CAS  Google Scholar 

  62. Sasirekha N, Basha SJS, Shanthi K (2006) Appl Catal B 62(1–2):169–180

    CAS  Google Scholar 

  63. Zhao Y, Waterhouse GI, Chen G, Xiong X, Wu LZ, Tung CH, Zhang T (2019) Chem Soc Rev 48(7):1972–2010

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the 973 Program (Grant No.:2014CB932101), the National Natural Science Foundation of China, 111 Project (Grant No.: B07004), Program for Changjiang Scholars and Innovative Research Team in University (IRT1205), and the Fundamental Research Funds for the Central Universities (buctrc201527), Open Research Fund of State Key Laboratory of Multi-phase Complex Systems (No. MPCS-2017-D-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lu.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 992 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zhao, X., Ullah, I. et al. The In-situ Growth NiFe-layered Double Hydroxides/g-C3N4 Nanocomposite 2D/2D Heterojunction for Enhanced Photocatalytic CO2 Reduction Performance. Catal Lett 151, 1683–1692 (2021). https://doi.org/10.1007/s10562-020-03426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03426-2

Keywords

Navigation