Skip to main content
Log in

Instant Cyclohexene Epoxidation Over Ni-TUD-1 Under Ambient Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

To avoid the aggregation problem and activity loss of nickel oxide (NiO) nanoparticles (NPs) in organic reactions, NiO NPs were incorporated into TUD-1 mesoporous material. One-step sol–gel preparation was applied to prepare four samples of Ni incorporated in TUD-1 silica matrix with different Ni content. The four samples with Si/Ni ratio = 100, 50, 20, and 10 were characterized by means of elemental analysis, powder X-ray diffraction (XRD), Raman spectroscopy, N2 sorption measurements, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and high-resolution transmission electron microscopy (HR-TEM). The characterization analysis showed that Ni2+ ions were incorporated into the silica matrix as individual isolated active sites at Ni content smaller than 2 wt%, and as nanoparticles of NiO when the loading is equal to or higher than 5 wt%. The size of NiO NPs inside the silica matrix is highly dependent on the Ni content, i.e. the size of NiO NPs when the loading was 5 wt% and 10 wt% was 5–10 and 40–60 nm, respectively. The catalytic activity of Ni-TUD-1 was investigated in the epoxidation reaction of cyclohexene at room temperature by using meta-chloroperoxybenzoic acid (m-CPBA) as an oxidant. The obtained results showed that Ni-TUD-1 exhibited superior activity in which 100% conversion of cyclohexene with > 90% selectivity towards cyclohexene oxide was obtained instantly. This result was found to benchmark not only the unsupported NiO nanoparticles, but also the reported catalysts at similar conditions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Smith JG (1984) Synthesis 1984:629–656. https://doi.org/10.1055/s-1984-30921

    Article  Google Scholar 

  2. Parker R-E, Isaacs NS (1959) Chem Rev 59:737–799. https://doi.org/10.1021/cr50028a006

    Article  CAS  Google Scholar 

  3. Kooti M, Afshari M (2012) Mater Res Bull 47:3473–3478. https://doi.org/10.1016/j.materresbull.2012.07.001

    Article  CAS  Google Scholar 

  4. Zhu Y, Wang Q, Cornwall RG, Shi Y (2014) Chem Rev 114:8199–8256. https://doi.org/10.1021/cr500064w

    Article  PubMed  CAS  Google Scholar 

  5. De Vos DE, Sels BF, Jacobs PA (2003) Adv Synth Catal 345:457–473. https://doi.org/10.1002/adsc.200390051

    Article  Google Scholar 

  6. Oyama TS (2011) Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Elsevier, Amsterdam

    Google Scholar 

  7. Hausinger RP (1997) J Biol Inorg Chem 2:279–286

    Article  CAS  Google Scholar 

  8. Al-Mjeni F, Ju T, Pochapsky TC, Maroney MJ (2002) Biochemistry 41:6761–6769. https://doi.org/10.1021/bi012209a

    Article  PubMed  CAS  Google Scholar 

  9. Bonam D, McKenna MC, Stephens PJ, Ludden PW (1988) Proc Natl Acad Sci USA 85:31–35. https://doi.org/10.1073/pnas.85.1.31

    Article  PubMed  CAS  Google Scholar 

  10. Gopal B, Madan LL, Betz SF, Kossiakoff AA (2005) Biochemistry 44:193–201. https://doi.org/10.1021/bi0484421

    Article  PubMed  CAS  Google Scholar 

  11. Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Biochemistry 43:8038–8047. https://doi.org/10.1021/bi0496081

    Article  PubMed  CAS  Google Scholar 

  12. Darnault C, Volbeda A, Kim EJ, Legrand P, Vernède X, Lindahl PA, Fontecilla-Camps JC (2003) Nat Struct Mol Biol 10:271–279. https://doi.org/10.1038/nsb912

    Article  CAS  Google Scholar 

  13. Sabet M, Salavati-Niasari M, Amiri O (2014) Electrochim Acta 117:504–520. https://doi.org/10.1016/j.electacta.2013.11.176

    Article  CAS  Google Scholar 

  14. Salavati-Niasari M, Ghanbari D, Loghman-Estarki MR (2012) Polyhedron 35:149–153. https://doi.org/10.1016/j.poly.2012.01.010

    Article  CAS  Google Scholar 

  15. Davar F, Salavati-Niasari M (2011) J Alloys Compd 509:2487–2492. https://doi.org/10.1016/j.jallcom.2010.11.058

    Article  CAS  Google Scholar 

  16. Mohandes F, Davar F, Salavati-Niasari M (2010) J Phys Chem Solids 71:1623–1628. https://doi.org/10.1016/j.jpcs.2010.08.014

    Article  CAS  Google Scholar 

  17. Hu J, Xia F, Yang F, Weng J, Yao P, Zheng C, Zhu C, Tang T, Fu W (2017) RSC Adv 7:41204–41209. https://doi.org/10.1039/C7RA06828J

    Article  CAS  Google Scholar 

  18. Tao P, Lu X, Zhang H, Jing R, Huang F, Wu S, Zhou D, Xia Q (2019) Mol Catal 463:8–15. https://doi.org/10.1016/j.mcat.2018.11.006

    Article  CAS  Google Scholar 

  19. Nasseri MA, Allahresani A, Raissi H (2014) React Kinet Mech Catal 112:397–408. https://doi.org/10.1007/s11144-014-0715-1

    Article  CAS  Google Scholar 

  20. Ghiami S, Nasseri MA, Allahresani A, Kazemnejadi M (2019) React Kinet Mech Catal 126(1):383–398. https://doi.org/10.1007/s11144-018-1479-9

    Article  CAS  Google Scholar 

  21. Samanta S, Laha SC, Mal NK, Bhaumik A (2004) J Mol Catal A 222:235–241. https://doi.org/10.1016/j.molcata.2004.08.014

    Article  CAS  Google Scholar 

  22. Samanta S, Mal NK, Bhaumik A (2005) J Mol Catal A 236:7–11. https://doi.org/10.1016/j.molcata.2005.04.005

    Article  CAS  Google Scholar 

  23. Held A, Kowalska-Kuś J, Nowińska K, Góra-Marek K (2018) Catal Lett 148:2058–2068. https://doi.org/10.1007/s10562-018-2420-6

    Article  CAS  Google Scholar 

  24. Telalović S, Ramanathan A, Mul G, Hanefeld U (2010) J Mater Chem 20:642–658. https://doi.org/10.1039/B904193A

    Article  Google Scholar 

  25. Prasad MR, Hamdy MS, Mul G, Bouwman E, Drent E (2008) J Catal 260:288–294. https://doi.org/10.1016/j.jcat.2008.09.021

    Article  CAS  Google Scholar 

  26. Hamdy MS, Mul G (2015) Appl Catal B 174:413–420. https://doi.org/10.1016/j.apcatb.2015.03.030

    Article  CAS  Google Scholar 

  27. Hamdy MS, Mul G (2012) Catal Sci Technol 2:1894–1900. https://doi.org/10.1039/C2CY20073B

    Article  CAS  Google Scholar 

  28. Hamdy MS, Mul G, Wei W, Anand R, Hanefeld U, Jansen JC, Moulijn JA (2005) Catal Today 110:264–271. https://doi.org/10.1016/j.cattod.2005.09.026

    Article  CAS  Google Scholar 

  29. Hamdy MS, Mul G, Jansen JC, Ebaid A, Shan Z, Overweg AR, Maschmeyer Th (2005) Catal Today 100:255–260. https://doi.org/10.1016/j.cattod.2004.10.018

    Article  CAS  Google Scholar 

  30. Hamdy MS, Ramanathan A, Maschmeyer Th, Hanefeld U, Jansen JC (2006) Chem Eur J 12:1782–1789. https://doi.org/10.1002/chem.200500166

    Article  PubMed  CAS  Google Scholar 

  31. Abboud M (2020) Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-020-01864-y

    Article  Google Scholar 

  32. Hamdy MS, Berg O, Jansen JC, Maschmeyer Th, Moulijn JA, Mul G (2006) Chem Eur J 12:620–628. https://doi.org/10.1002/chem.200500649

    Article  CAS  Google Scholar 

  33. Al-Shehri BM, Khder AR, Ashour SS, Alhanash AM, Shkir M, Hamdy MS (2019) J Non-Cryst Solids 515:68–74. https://doi.org/10.1016/j.jnoncrysol.2019.04.007

    Article  CAS  Google Scholar 

  34. Adam F, Chew T-S, Andas J (2011) J Sol-Gel Sci Technol 59:580–583. https://doi.org/10.1007/s10971-011-2531-7

    Article  CAS  Google Scholar 

  35. Allagui A, Baranova EA, Wüthrich R (2013) Electrochim Acta 93:137–142. https://doi.org/10.1016/j.electacta.2012.12.057

    Article  CAS  Google Scholar 

  36. Sing KSW (1985) Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  37. Gbadamasi S, Ali TH, Voon LH, Atta AY, Sudarsanam P, Bhargava SK, Abd Hamid SB (2016) RSC Adv 6:25992–26002. https://doi.org/10.1039/C5RA27526A

    Article  CAS  Google Scholar 

  38. Borodko Y, Ager Illi JW, Marti GE, Song H, Niesz K, Somorjai GA (2005) J Phys Chem B 109:17386–17390. https://doi.org/10.1021/jp051801x

    Article  PubMed  CAS  Google Scholar 

  39. Jansen JC, Shan Z, Marchese L, Zhou W, vd Puil N, Maschmeyer T (2001) Chem Commun 8:713–714. https://doi.org/10.1039/B101000J

    Article  Google Scholar 

  40. Carraro PM, Soria FA, Vaschetto EG, Sapag K, Oliva MI, Eimer GA (2019) Adsorption 25:1409–1418. https://doi.org/10.1007/s10450-019-00103-8

    Article  CAS  Google Scholar 

  41. Volkov VV, Wang ZL, Zou BS (2001) Chem Phys Lett 337:117–124. https://doi.org/10.1016/S0009-2614(01)00191-9

    Article  CAS  Google Scholar 

  42. Tirsoaga A, Visinescu D, Jurca B, Ianculescu A, Carp O (2011) J Nanoparticle Res 13:6397–6408. https://doi.org/10.1007/s11051-011-0392-1

    Article  CAS  Google Scholar 

  43. Hamdy MS, Mul G (2013) ChemCatChem 5:3156–3163. https://doi.org/10.1002/cctc.201300457

    Article  CAS  Google Scholar 

  44. Waller P, Shan Z, Marchese L, Tartaglione G, Zhou W, Jansen JC, Maschmeyer T (2004) Chem Eur J 10:4970–4976. https://doi.org/10.1002/chem.200400343

    Article  PubMed  CAS  Google Scholar 

  45. Ahn HM, Bae JM, Kim MJ, Bok KH, Jeong HY, Lee SJ, Kim C (1976) Chem Eur J 23(2017):11969–11971. https://doi.org/10.1002/chem.201702750

    Article  CAS  Google Scholar 

  46. Hu R, Yang P, Pan Y, Li Y, He Y, Feng J, Li D (2017) Dalton Trans 46:13463–13471. https://doi.org/10.1039/C7DT02247F

    Article  PubMed  CAS  Google Scholar 

  47. Su H, Li Z, Huo Q, Guan J, Kan Q (2014) RSC Adv 4:9990. https://doi.org/10.1039/C3RA47732K

    Article  CAS  Google Scholar 

  48. Valand J, Parekh H, Friedrich HB (2013) Catal Commun 40:149–153. https://doi.org/10.1016/j.catcom.2013.06.008

    Article  CAS  Google Scholar 

  49. Sun J, Kan QB, Li ZF, Yu GL, Liu H, Yang XY, Huo QS, Guan JQ (2014) RSC Adv 4:2310–2317. https://doi.org/10.1039/C3RA45599H

    Article  CAS  Google Scholar 

  50. Kick JW, Anneser MR, Hofmann B, Pcthig A, Cokoja M, Kihn FE (2015) Chemsuschem 8:4056–4063. https://doi.org/10.1002/cssc.201500930

    Article  CAS  Google Scholar 

  51. Sinclair PE, Catlow RA (1999) J Phys Chem B 103:1084. https://doi.org/10.1021/jp9821679

    Article  CAS  Google Scholar 

  52. Urakawa A, Burgi T, Skrabal P, Bangerter F, Baiker A (2005) J Phys Chem 109:2212–2221. https://doi.org/10.1021/jp048999q

    Article  CAS  Google Scholar 

  53. Allahresani A, Nasseri MA (2017) J Chem Sci 129:343–352. https://doi.org/10.1007/s12039-017-1229-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely acknowledged the Deanship of Scientific Research at King Khalid University for funding this work through a research group Project Number R.G.P1/89/40. Moreover, the authors extend also their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no (RSP-2020/160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Hamdy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdy, M.S., Al-Zaqri, N., Sahlabji, T. et al. Instant Cyclohexene Epoxidation Over Ni-TUD-1 Under Ambient Conditions. Catal Lett 151, 1612–1622 (2021). https://doi.org/10.1007/s10562-020-03423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03423-5

Keywords

Navigation