Skip to main content
Log in

DFNS/PEI/Cu Nanocatalyst for Reduction of Nitro-aromatic Compounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nitro-aromatic pollution in industrial waste streams threat wellbeing of water resources. This study investigates the performance of a copper-based nano catalyst to reduce nitro-aromatic compounds in aqueous solution. Anchoring Cu NPs within the nano spaces of a fibrous silicate with high surface area, and simple accessibility of active sites were successfully established by a facile approach to produce a novel nanocatalyst (DFNS/PEI/Cu). DFNS displayed different properties such as dandelion-like shape, high surface area, and simple availability of active sites. Immobilization of the Cu NPs on DFNS nanospheres not only prevented their aggregation, but also considerably improved the availability of the catalytic active sites. The DFNS/PEI/Cu nanocatalyst demonstrated great catalytic activities for the reduction of nitro compounds under green conditions. Our findings show fibrous DFNS and Cu NPs as a helpful platform for the fabrication of noble metal-based affordable nanocatalyst for many catalytic applications.

Graphic Abstract

DFNS/PEI/Cu nanocatalyst as a new adsorbents for the reduction of nitro compounds

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. Mohammadi M, Rezaei A, Khazaei A, Xuwei S, Huajun Z (2019) ACS Appl Mater Interfaces 11:33194–33206

    CAS  PubMed  Google Scholar 

  2. Ramazani A, Khoobi M, Sadri F, Tarasi R, Shafiee A, Aghahosseini H, Joo SW (2018) Appl Organomet Chem 32:e3908

    Google Scholar 

  3. Mohammadi M, Khazaei A, Rezaei A, Huajun Z, Xuwei S (2019) ACS Sustain Chem Eng 7:5283–5291

    CAS  Google Scholar 

  4. Sadeghzadeh SM (2016) J Mol Liq 223:267–273

    CAS  Google Scholar 

  5. Rezayati S, Ramazani A (2020) Res Chem Intermed 46:3757–3799

    CAS  Google Scholar 

  6. Taghavi Fardood S, Moradnia F, Ramazani A (2019) Micro Nano Lett 14:986–991

    Google Scholar 

  7. Taghavi Fardood S, Ramazani A, Golfar Z, Joo SW (2017) Appl Organomet Chem 31:e3823

    Google Scholar 

  8. Sadeghzadeh SM, Daneshfar F, Malekzadeh M (2014) Chin J Chem 32:349–355

    CAS  Google Scholar 

  9. Aghahosseini H, Ramazani A (2020) Eurasian Chem Commun 2:410–419

    CAS  Google Scholar 

  10. Mehr ES, Sorbiun M, Ramazani A, Fardood ST (2018) J Mater Sci Mater Electron 29:1333–1340

    Google Scholar 

  11. Saadati SM, Sadeghzadeh SM (2018) Catal Lett 148:1692–1702

    CAS  Google Scholar 

  12. Aghahosseini H, Ramazani A, Ślepokura K, Lis T (2018) J Colloid Interface Sci 511:222–232

    CAS  PubMed  Google Scholar 

  13. Fattahi N, Triantafyllidis K, Luque R, Ramazani A (2019) Catalysts 9:758

    Google Scholar 

  14. Motevalizadeh SF, Alipour M, Ashori F, Samzadeh-Kermani A, Hamadi H, Ganjali MR, Aghahosseini H, Ramazani A, Khoobi M, Gholibegloo E (2018) Appl Organomet Chem 32:e4123

    Google Scholar 

  15. Sadeghzadeh SM, Zhiani R, Emrani S (2018) Catal Lett 148:119–124

    CAS  Google Scholar 

  16. Tarasi R, Ramazani A, Ghorbanloo M, Khoobi M, Aghahosseini H, Joo SW, Shafiee A (2018) Silicon 10:257–265

    CAS  Google Scholar 

  17. Varnaseri N, Rouhani F, Ramazani A, Morsali A (2020) Dalton Trans 49:3234–3242

    CAS  PubMed  Google Scholar 

  18. Zhang K, Suh JM, Lee TH, Cha JH, Choi JW, Jang HW, Varma RS, Shokouhimehr M (2019) Convergence 6:6

    Google Scholar 

  19. Abdullahi Md Amir MA, Asiri SM, Korkmaz AD, Baykal A, Soylu GSP, Karakuş S, Kilislioğlu A (2018) Catal Lett 148:1130–1141

    Google Scholar 

  20. Zhang K, Suh JM, Choi JW, Jang HW, Shokouhimehr M, Varma RS (2019) ACS Omega 4:483–495

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sagar S, Sengupta S, Mota AJ, Chattopadhyay SK, Ferao AE, Riviere E, Lewis W, Naskar S (2017) Dalton Trans 46:1249–1259

    CAS  PubMed  Google Scholar 

  22. Dhara K, Roy P, Ratha J, Manassero M, Banerjee P (2007) Polyhedron 26:4509–4517

    CAS  Google Scholar 

  23. Sommer MG, Rechkemmer Y, Suntrup L, Hohloch S, van der Meer M, van Slageren J, Sarkar B (2016) Dalton Trans 45:17770–17781

    CAS  PubMed  Google Scholar 

  24. Vangdal B, Carranza J, Lloret F, Julve M, Sletten J (2002) J Chem Soc Dalton Trans 566–574

  25. Gennarini F, David R, López I, Le Mest Y, Réglier M, Belle C, Thibon-Pourret A, Jamet H, Le Poul N (2017) Inorg Chem 56:7707–7719

    CAS  PubMed  Google Scholar 

  26. Jang Y, Kim S, Jun SW, Kim BH, Hwang S, Song IK, Kim BM, Hyeon T (2011) Chem Commun 47:3601–3603

    CAS  Google Scholar 

  27. Khan FA, Dash J, Sudheer C, Gupta RK (2003) Tetrahedron Lett 44:7783–7787

    CAS  Google Scholar 

  28. Rai G, Jeong JM, Lee YS, Kim HW, Lee DS, Chung JK, Lee MC (2005) Tetrahedron Lett 46:3987–3990

    CAS  Google Scholar 

  29. Shen Y, Su Y, Ma Y (2015) RSC Adv 5:7597–7603

    CAS  Google Scholar 

  30. Figueras F, Coq B (2001) J Mol Catal A 173:223–230

    CAS  Google Scholar 

  31. Lagrost C, Preda L, Volanschi E, Hapiot P (2005) J Electroanal Chem 585:1–7

    CAS  Google Scholar 

  32. Magdalene RM, Leelamani EG, Nanje GNM (2004) J Mol Catal A 223:17–20

    CAS  Google Scholar 

  33. Cardenas-Lizana F, Gomez-Quero S, Keane MA (2008) Catal Commun 9:475–481

    CAS  Google Scholar 

  34. Duan Z, Ma G, Zhang W (2012) Bull Korean Chem Soc 33:4003–4006

    CAS  Google Scholar 

  35. Yan N, Yuan Y, Dyson PJ (2013) Dalton Trans 42:13294–13304

    CAS  PubMed  Google Scholar 

  36. Paganelli S, Piccolo O, Baldi F, Tassini R, Gallo M, La Sorella G (2013) Appl Catal A 451:144–152

    CAS  Google Scholar 

  37. Shiraishi Y, Fujiwara K, Sugano Y, Ichikawa S, Hirai T (2013) ACS Catal 3:312–320

    CAS  Google Scholar 

  38. Imamura K, Yoshikawa T, Nakanishi K, Hashimoto K, Kominami H (2013) Chem Commun 49:10911–10913

    CAS  Google Scholar 

  39. Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P (2006) Angew Chem Int Ed 45:7824–7828

    CAS  Google Scholar 

  40. Zeng J, Zhang Q, Chen J, Xia Y (2009) Nano Lett 10:30–35

    Google Scholar 

  41. Wang M-L, Jiang T-T, Lu Y, Liu H-J, Chen Y (2013) J Mater Chem A 1:5923–5933

    CAS  Google Scholar 

  42. Lin Y, Qiao Y, Wang Y, Yan Y, Huang J (2012) J Mater Chem 22:18314–18320

    CAS  Google Scholar 

  43. Fang Y, Wang E (2013) Nanoscale 5:1843–1848

    CAS  PubMed  Google Scholar 

  44. Ganapathy D, Sekar G (2013) Catal Commun 39:50–54

    CAS  Google Scholar 

  45. Feng G, Liu F, Lin C, Li W, Wang S, Qi C (2013) Catal Commun 37:27–31

    CAS  Google Scholar 

  46. Yuan G, Keane MA (2007) Ind Eng Chem Res 46:705–715

    CAS  Google Scholar 

  47. Wei S, Ma Z, Wang P, Dong Z, Ma J (2013) J Mol Catal A 370:175–181

    CAS  Google Scholar 

  48. Li W, Zhang B, Li X, Zhang H, Zhang Q (2013) Appl Catal A 459:65–72

    CAS  Google Scholar 

  49. Polshettiwar V, Cha D, Zhang X, Basset JM (2010) Angew Chem 49:9652–9656

    CAS  Google Scholar 

  50. Fihri A, Bouhrara M, Patil U, Cha D, Saih Y, Polshettiwar V (2012) ACS Catal 2:1425–1431

    CAS  Google Scholar 

  51. Lilly Thankamony AS, Lion C, Pourpoint F, Singh B, Perez Linde AJ, Carnevale D, Bodenhausen G, Vezin H, Lafon O, Polshettiwar V (2015) Angew Chem 54:2190–2193

    Google Scholar 

  52. Sdeghzadeh SM (2016) Catal Sci Technol 6:1435–1441

    Google Scholar 

  53. Parlett CM, Wilson K, Lee AF (2013) Chem Soc Rev 42:3876–3893

    CAS  PubMed  Google Scholar 

  54. Sadeghzadeh SM, Zhiani R, Emrani S (2017) RSC Adv 7:24885–24894

    CAS  Google Scholar 

  55. Sadeghzadeh SM (2015) RSC Adv 5:68947–68952

    CAS  Google Scholar 

  56. Zhao Y, Tang JJ, Motavalizadehkakhky A, Kakooeie S, Sadeghzadeh SM (2019) RSC Adv 9:35022–35032

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Rastakhiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, M., Rastakhiz, N., Ghaedi, M. et al. DFNS/PEI/Cu Nanocatalyst for Reduction of Nitro-aromatic Compounds. Catal Lett 151, 1653–1662 (2021). https://doi.org/10.1007/s10562-020-03422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03422-6

Keywords

Navigation