Skip to main content
Log in

Total Oxidation of Methane Over Sulfur Poisoning Resistant Pt/ZrO2 Catalyst: Effect of Pt2+–Pt4+ and Pt2+–Zr4+ Dipoles at Metal-Support Interface

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We present a Pt/ZrO2 catalyst that can operate in the harsh conditions of methane oxidation without being deactivated by SO2. XPS analysis of 1%Pt/ZrO2 catalyst revealed the presence of stable Pt2+–Pt4+ and Pt2+–Zr4+ bifunctional catalytic sites of dipolar nature at the Pt–ZrO2 interface. These sites increase the probability of CH4 polarization, increasing the strength of their collision with the catalyst surface, lowering the C–H bond energy and facilitating the abstraction of the first hydrogen in adsorbed CH4. The resistance of the catalyst to deactivation by sulfur poisoning is explained considering the stronger interaction of SO2 with Pt2+–Zr4+ dipolar sites, presenting a higher dipolar electric potential than Pt2+–Pt4+, on which CH4 adsorption and oxidation occur.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Korakianitis T, Namasivayam AM, Crookes RJ (2011) Prog Energy Combust Sci 37:89

    CAS  Google Scholar 

  2. Allenby S, Chang WC, Megaritis A, Wyszyński ML (2001) Proc Instr Mech Eng D 215:405

    Google Scholar 

  3. Deutschmann O, Grunwaldt JD (2013) Chem Ing Tech 85:595

    CAS  Google Scholar 

  4. Farrauto RJ, Lampert JK, Hobson MC, Waterman EM (1995) Appl Catal B 6:263

    CAS  Google Scholar 

  5. Gélin P, Primet M (2002) Appl Catal B 39:1

    Google Scholar 

  6. Gärtner A, Lenk T, Kiemel R, Casu S, Breuer C, Stöwe K (2016) Top Catal 59:1071

    Google Scholar 

  7. Ciuparu D, Lyubovsky MR, Altman E, Pfefferle LD, Datye A (2002) Catal Rev 44:593

    CAS  Google Scholar 

  8. Gélin P, Urfels L, Primet M, Tena E (2003) Catal Today 83:45

    Google Scholar 

  9. M'Ramadj O, Zhang B, Li D, Wang X, Lu G (2007) J Nat Gas Chem 16:258

    CAS  Google Scholar 

  10. Osman AI, Abu-Dahrieh JK, Laffir F, Curtin T, Thompson JM, Rooney DW (2016) Appl Catal B 187:408

    CAS  Google Scholar 

  11. Corro G, Cano C, Fierro JG (2008) J Mol Catal A 281:179

    CAS  Google Scholar 

  12. Kylhammar L, Carlsson PA, Skoglundh M (2011) J Catal 284:50

    CAS  Google Scholar 

  13. Lampert JK, Kazi MS, Farrauto RJ (1997) Appl Catal B 14:211

    CAS  Google Scholar 

  14. Persson K, Ersson A, Manrique-Carrera A, Jayasuriya J, Fakhari R, Fransson T, Jaras S (2005) Catal Today 100:479

    CAS  Google Scholar 

  15. Sadokhina N, Smedler G, Nylén U, Olofsson M, Olsson L (2018) Appl Catal B 263:384

    Google Scholar 

  16. Gremminger A, Lott P, Merts M, Casapu M, Grunwaldt JD, Deutschmann O (2017) Appl Catal B 218:833

    CAS  Google Scholar 

  17. Platero EE, Mentruit MP, Areán CO, Zecchina A (1996) J Catal 162:268

    Google Scholar 

  18. Nakamoto K, Fujita J, Tanaka S, Kobayashi M (1957) J Am Chem Soc 79:4904

    CAS  Google Scholar 

  19. Larsen G, Lotero E, Nabity M, Petkovic LM, Shobe DS (1996) J Catal 164:246

    CAS  Google Scholar 

  20. Ciuparu D, Ensuque A, Shafeev G, Bozon-Verduraz F (2000) J Mater Sci Lett 19:931

    CAS  Google Scholar 

  21. Parida KM, Mallick S (2007) J Mol Catal A 275:77

    CAS  Google Scholar 

  22. Lietz G, Lieske H, Spindler H, Hanke W, Völter J (1983) J Catal 81:17

    CAS  Google Scholar 

  23. Lieske H, Lietz G, Spindler H, Völter J (1983) J Catal 81:8

    CAS  Google Scholar 

  24. Alerasool S, Boecker D, Rejai B, Gonzalez RD, Del Angel G, Azomosa M, Gomez R (1988) Langmuir 4:1083

    CAS  Google Scholar 

  25. Briggs D, Seah MP (1990) Practical surface analysis by auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley, Chichester

    Google Scholar 

  26. Kim KS, Winograd N, Davis RE (1971) J Am Chem Soc 93:6296

    CAS  Google Scholar 

  27. Aricò AS, Shukla AK, Kim H, Park S, Min M, Antonucci V (2001) Appl Surf Sci 172:33

    Google Scholar 

  28. Barr TL, Yin MP (1989) ACS Symp Ser 411:203

    Google Scholar 

  29. Ardizzone S, Bianchi CL (1999) Appl Surf Sci 152:63

    CAS  Google Scholar 

  30. Miranda CD, Ramírez AE, Jurado SG, Vera CR (2015) J Mol Catal A 398:325

    Google Scholar 

  31. Deeba M, Farrauto RJ, Lui YK (1995) Appl Cat A 124:339

    CAS  Google Scholar 

  32. Bond GC (1962) Catalysis by metals. Academic Press, London

    Google Scholar 

  33. Godolets GI (1983) Stud Surf Sci Catal 15:365

    Google Scholar 

  34. Beck DD, Krueger MH, Monroe DR (1991) SAE Paper no. 910844

  35. Ebitani K, Konishi J, Horie Α, Hattori H, Tanabe K (1989) In: Tanabe K, Hattori H, Yamaguchi T, Tanaka T (eds) Acid-base catalysis. Kodansha, Tokyo, pp 491–498

    Google Scholar 

  36. Kikuchi R (2001) Environ Manag 27:837

    CAS  Google Scholar 

  37. Sulfur trioxide measurement technique for SCR units. Environment project No. 1885. October 2016. The Danish Environmental Protection Agency. Editor Fateev A and Calusen S. ISBN: 978-87-93529-18-2

  38. Krakow B, Lord RC (1966) J Chem Phys 44:3640

    CAS  Google Scholar 

  39. Doornkamp C, Ponec V (2000) J Mol Catal A 162:19

    CAS  Google Scholar 

  40. Garetto TF, Apesteguía CR (2000) Cat Today 62:189

    CAS  Google Scholar 

  41. Fujimoto K, Ribeiro FH, Avalos-Borja M, Iglesia E (1998) J Catal 179:431

    CAS  Google Scholar 

  42. Burch R, Hayes M (1995) J Mol Catal A 100:13

    CAS  Google Scholar 

  43. Beck IE, Bukhtiyarov VI, Pakharukov IY, Zaikovsky VI, Kriventsov VV, Parmon VN (2009) J Catal 268:60

    CAS  Google Scholar 

  44. Ono LK, Yuan B, Heinrich H, Cuenya R (2010) J Phys Chem C 114:22119

    CAS  Google Scholar 

  45. Ahmadi M, Mistry H, Cuenya R (2016) J Phys Chem Lett 7:3519

    PubMed  CAS  Google Scholar 

  46. Cargnello M, Doan-Nguyen VVT, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Science 341:771

    PubMed  CAS  Google Scholar 

  47. Ozier I (1971) Phys Rev Lett 27:1329

    CAS  Google Scholar 

  48. Patel D, Margolese D, Dykea TR (1979) J Chem Phys 70:2740

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Vicerrectoría de Investigación y Estudios de Posgrado (BUAP) (Grant No. Nat 2020-46), and Secretaría de Energía (Mexico) (Grant No. Cluster Biodiesel 250014), Consejo Nacional de CIencia y Tecnología (Mexico) (Grant No. Cluster Biodiesel 250014) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grisel Corro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torralba, R., Corro, G., Rosales, F. et al. Total Oxidation of Methane Over Sulfur Poisoning Resistant Pt/ZrO2 Catalyst: Effect of Pt2+–Pt4+ and Pt2+–Zr4+ Dipoles at Metal-Support Interface. Catal Lett 151, 1592–1603 (2021). https://doi.org/10.1007/s10562-020-03411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03411-9

Keywords

Navigation