Skip to main content
Log in

A Novel Catalytic Process for Degradation of Bisphenol A in Aqueous Solutions Using Fe Supported on Alginate/Carboxymethylcellulose

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work aimed to synthesize new heterogeneous iron-based catalysts supported on biopolymers (alginate (Alg), carboxymethylcellulose (CMC), xanthan gum (GX) and chitosan (Qui)) and their mixtures—and their mixtures—to evaluate their degradation Bisphenol A (BPA) in aqueous solutions. The Alg-Fe, QuiGa-Fe and CMC-Fe, CMCGX-Fe, AlgCMC-Fe, AlgGX-Fe catalysts were prepared and characterized by SEM, FTIR and FAAS. For the degradation of BPA was evaluated and AlgCMC-Fe was considered the best catalyst for having high catalytic activity and less leaching of iron ions in the reaction medium. Then, the kinetics of BPA degradation by Fenton oxidation process were investigated varying: H2O2 concentration, AlgCMC-Fe content, pH, reaction time and initial BPA concentrations. The degradation of BPA was monitored by HPLC–DAD and the results showed that AlgCMC-Fe were able to promote total degradation of BPA in aqueous solutions a (2.00 mg L−1 BPA) at a pH close to neutral, with a recycling capacity of up to three times with the same efficiency. The pseudo-second-order was the most appropriate model to describe the kinetic mechanism.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Elena A, Orbeci C, Lazau C et al (2013) Waste water treatment methods. In: Water treatment. InTech, London

  2. Zheng C, Zhao L, Zhou X et al (2013) Treatment technologies for organic wastewater. In: Water treatment. InTech, London

  3. Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572. https://doi.org/10.1016/j.jece.2013.10.011

    Article  CAS  Google Scholar 

  4. Reddy PVL, Kim KH, Kavitha B et al (2018) Photocatalytic degradation of bisphenol A in aqueous media: a review. J Environ Manag 213:189–205

    Article  CAS  Google Scholar 

  5. Olmez-Hanci T, Arslan-Alaton I, Genc B (2013) Bisphenol A treatment by the hot persulfate process: oxidation products and acute toxicity. J Hazard Mater 263:283–290. https://doi.org/10.1016/j.jhazmat.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  6. Dietrich M, Franke M, Stelter M, Braeutigam P (2017) Degradation of endocrine disruptor bisphenol A by ultrasound-assisted electrochemical oxidation in water. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2017.05.038

    Article  PubMed  Google Scholar 

  7. Wang N, Zheng T, Zhang G, Wang P (2016) A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng 4:762–787. https://doi.org/10.1016/j.jece.2015.12.016

    Article  CAS  Google Scholar 

  8. Lee Y, Lee W (2010) Degradation of trichloroethylene by Fe(II) chelated with cross-linked chitosan in a modified Fenton reaction. J Hazard Mater 178:187–193. https://doi.org/10.1016/j.jhazmat.2010.01.062

    Article  CAS  PubMed  Google Scholar 

  9. Cruz A, Couto L, Esplugas S, Sans C (2017) Study of the contribution of homogeneous catalysis on heterogeneous Fe(III)/alginate mediated photo-Fenton process. Chem Eng J 318:272–280. https://doi.org/10.1016/j.cej.2016.09.014

    Article  CAS  Google Scholar 

  10. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—a review. Appl Catal B 176–177:249–265. https://doi.org/10.1016/j.apcatb.2015.04.003

    Article  CAS  Google Scholar 

  11. Dong Y, Dong W, Cao Y et al (2011) Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation. Catal Today 175:346–355. https://doi.org/10.1016/j.cattod.2011.03.035

    Article  CAS  Google Scholar 

  12. Rosales E, Iglesias O, Pazos M, Sanromán MA (2012) Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. J Hazard Mater 213–214:369–377. https://doi.org/10.1016/j.jhazmat.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  13. Iglesias O, Gómez J, Pazos M, Sanromán MÁ (2014) Electro-Fenton oxidation of imidacloprid by Fe alginate gel beads. Appl Catal B 144:416–424. https://doi.org/10.1016/j.apcatb.2013.07.046

    Article  CAS  Google Scholar 

  14. Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5:40552–40577. https://doi.org/10.1039/C5RA02023A

    Article  CAS  Google Scholar 

  15. Ben HS, Adhoum N, Monser L (2015) Synthesis of magnetic alginate beads based on Fe3O4 nanoparticles for the removal of 3-methylindole from aqueous solution using Fenton process. J Hazard Mater 294:128–136. https://doi.org/10.1016/j.jhazmat.2015.03.068

    Article  CAS  Google Scholar 

  16. He J, Yang X, Men B, Wang D (2016) Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review. J Environ Sci 39:97–109. https://doi.org/10.1016/j.jes.2015.12.003

    Article  CAS  Google Scholar 

  17. Ben HS, Fourcade F, Assadi A et al (2016) Effective heterogeneous electro-Fenton process for the degradation of a malodorous compound, indole, using iron loaded alginate beads as a reusable catalyst. Appl Catal B 182:47–58. https://doi.org/10.1016/j.apcatb.2015.09.007

    Article  CAS  Google Scholar 

  18. Ben Hammouda S, Adhoum N, Monser L (2016) Chemical oxidation of a malodorous compound, indole, using iron entrapped in calcium alginate beads. J Hazard Mater 301:350–361. https://doi.org/10.1016/j.jhazmat.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  19. de Jesús Ruíz-Baltazar Á, Reyes-López SY, de Lourdes Mondragón-Sánchez M et al (2019) Eco-friendly synthesis of Fe3O4 nanoparticles: evaluation of their catalytic activity in methylene blue degradation by kinetic adsorption models. Results Phys 12:989–995. https://doi.org/10.1016/j.rinp.2018.12.037

    Article  Google Scholar 

  20. Shriver DF, Atkins PW, Overton TL et al (2008) Química inorgânica, 4th edn. Bookman, Porto Alegre

    Google Scholar 

  21. Papageorgiou SK, Kouvelos EP, Favvas EP et al (2010) Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydr Res 345:469–473. https://doi.org/10.1016/j.carres.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  22. Silvertein RM, Webster FX, Kiemle DJ (2007) Identificação espectrométrica de compostos orgânicos, 7th edn. LTC, Rio de Janeiro

    Google Scholar 

  23. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rinaudo M (2014) Biomaterials based on a natural polysaccharide: alginate. TIP 17:92–96. https://doi.org/10.1016/S1405-888X(14)70322-5

    Article  Google Scholar 

  25. Mirzaei A, Chen Z, Haghighat F, Yerushalmi L (2017) Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—a review. Chemosphere 174:665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  26. Luo Y, Guo W, Ngo HH et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065

    Article  CAS  PubMed  Google Scholar 

  27. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27. https://doi.org/10.1016/j.watres.2014.08.053

    Article  CAS  PubMed  Google Scholar 

  28. Alves T, Girardi R, Pinheiro A (2017) Micropoluentes orgânicos: ocorrência, remoção e regulamentação. Rev Gestão Água da América Lat. https://doi.org/10.21168/rega.v14n0.p0-1

    Article  Google Scholar 

  29. Vettorello G, Brandt VV, Dallazen MC et al (2017) Micropoluentes em água—O novo desafio emergente. Rev Cad Pedagógico. https://doi.org/10.22410/issn.1983-0882.v14i1a2017.1410

    Article  Google Scholar 

  30. Zhang D, Gersberg RM, Ng WJ, Tan SK (2014) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639. https://doi.org/10.1016/j.envpol.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  31. Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689. https://doi.org/10.1016/j.jhazmat.2005.12.043

    Article  CAS  PubMed  Google Scholar 

  32. Sun S-P, Li C-J, Sun J-H et al (2009) Decolorization of an azo dye orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. J Hazard Mater 161:1052–1057. https://doi.org/10.1016/j.jhazmat.2008.04.080

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. We also are grateful for the financial support provided by CNPq and FAPERJ; the Scanning Electron Microscopy Laboratory (PPGQ-UERJ) for SEM analysis; and the Laboratory of Instrumental Characterization II (PPGQ-UERJ) for FTIR and FAAS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mônica Regina da Costa Marques.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Bezerra, D., França, R.J. & da Costa Marques, M.R. A Novel Catalytic Process for Degradation of Bisphenol A in Aqueous Solutions Using Fe Supported on Alginate/Carboxymethylcellulose. Catal Lett 151, 1477–1487 (2021). https://doi.org/10.1007/s10562-020-03403-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03403-9

Keywords

Navigation