Skip to main content
Log in

Controllable Fabrication of Co3−xMnxO4 with Tunable External Co3+/Co2+ Ratio for Promoted Oxygen Reduction Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Co3−xMnxO4 is a bimetal oxide with excellent electrochemical activity in alkaline solution, has been regarded as a promising alternative in the field of ion-air batteries and proton exchange membrane fuel cell (PEMFC). Herein, we report a simple solvothermal-calcination method to fabricate Co3−xMnxO4 with tunable external Co3+/Co2+ and Mn3+/Mn2+ ratio. The tunable ratio of element valence in the bimetal results in a higher exposure of active center for oxygen redox reaction (ORR), and thus lead to a better ORR activity, which was confirmed by X-ray photoelectron spectroscopy characterizations and electrochemical measurements. Specially, Co1.8Mn1.2O4 with a Co3+/Co2+ ratio of 2.08 showed an overpotential of 0.37 V at benchmark ORR current density of 3 mA/cm2 in 0.1 M KOH, which is lower than that of pure oxide (Mn3O4 0.53 V and Co3O4 0.56 V). In addition, the as prepared Co1.8Mn1.2O4 exhibited a positive half-wave potential (0.83 V vs RHE) due to their more active sites, promotes charge transfer, adsorption and desorption of oxygen species. This work provides a strategy for the design and fabrication of earth-abundant, low-cost electrocatalysts for PEMFC in practical applications.

Graphic Abstract

Co3−xMnxO4 was fabricated by tuning external Co3+/Co2+ and Mn3+/Mn2+ ratio, and the activity initially shows a positive correlation with the ration of Co3+/Co2+ in Co3−xMnxO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tian XL, Lu XF, Xia BY et al (2020) Joule 4:45–68

    CAS  Google Scholar 

  2. Shao MH, Chang QW, Dodelet JP et al (2016) Chem Rev 116:3594–3657

    CAS  PubMed  Google Scholar 

  3. Gasteiger HA, Kocha SS, Sompalli B et al (2005) Appl Catal B Environ 56:9–35

    CAS  Google Scholar 

  4. Shinozaki K, Zack JW, Richards RM et al (2015) J Electrochem Soc 10:F1144–F1158

    Google Scholar 

  5. Yannick G, Olga A, Kocha E et al (2010) Anal Chem 82:6321–6328

    Google Scholar 

  6. Kocha SS, Shinozaki K, Zack JS et al (2017) Electrocatalysis 8:366–374

    CAS  Google Scholar 

  7. Stamenkovic VR, Fowler B, Mun BS et al (2007) Science 315:493–497

    CAS  PubMed  Google Scholar 

  8. Paulus UA, Schmidt TJ, Gasteiger HA et al (2001) J Electroanal Chem 495:134–145

    CAS  Google Scholar 

  9. Zhong M, Cano ZP, Yu AP et al (2020) Angew Chem Int Ed 59:18334–18338

    Google Scholar 

  10. Zhong HH, Campos-Roldán CA, Zhao Y et al (2018) Catalysts 8:559

    Google Scholar 

  11. Zheng ZL, Zhang WC, Chen L et al (2019) Appl Surf Sci 483:496–505

    CAS  Google Scholar 

  12. Su YC, Liu HC, Li CX et al (2019) J Alloys Compd 799:160–168

    CAS  Google Scholar 

  13. Kuznetsov DA, Han BH, Yang Y et al (2018) Joule 2:225–244

    CAS  Google Scholar 

  14. Lübke M, Sumboja A, McCafferty L et al (2018) ChemistrySelect 3:2613–2622

    Google Scholar 

  15. Jiang H, Gu JX, Zheng XS et al (2019) Energy Environ Sci 12:322–333

    CAS  Google Scholar 

  16. Yang J, Sun HY, Liang HY et al (2016) Adv Mater 28:4606–4613

    CAS  PubMed  Google Scholar 

  17. Tang C, Zhang Q (2017) Adv Mater 29:1604103

    Google Scholar 

  18. Zhu HY, Zhang S, Huang YX et al (2013) Nano Lett 13:2947–2951

    CAS  PubMed  Google Scholar 

  19. Seh ZW, Kibsgaard J, Dickens CF et al (2017) Science 355:eaad4998

    PubMed  Google Scholar 

  20. Lee DU, Li JD, Park MG et al (2017) ChemSusChem 10:2258–2266

    CAS  PubMed  Google Scholar 

  21. Li C, Han XP, Cheng FY et al (2015) Nat Commun 6:7345

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Giordano N, Passalacqua E, Pino L et al (1991) Electrochim Acta 36:1979–1984

    CAS  Google Scholar 

  23. Liu J, Jiang LH, Zhang BS et al (2014) ACS Catal 4:2998–3001

    CAS  Google Scholar 

  24. Yan DF, Li YX, Huo J et al (2017) Adv Mater 48:1606459

    Google Scholar 

  25. Xiao XL, Liu XF, Zhao H et al (2012) Adv Mater 24:5762–5766

    CAS  PubMed  Google Scholar 

  26. Kreider ME, Stevens MB, Liu YZ et al (2020) Chem Mater 32:2946–2960

    CAS  Google Scholar 

  27. Han XP, He GW, He Y et al (2018) Adv Energy Mater 8:1702222

    Google Scholar 

  28. Liao PL, Keith JA, Carter EA (2012) J Am Chem Soc 134:13296–13309

    CAS  PubMed  Google Scholar 

  29. Suntivich J, Hong WT, Lee YL et al (2014) J Phys Chem C 118:1856–1863

    CAS  Google Scholar 

  30. Zagal JH, Koper MTM (2016) Angew Chem Int Ed 55:14510–14521

    CAS  Google Scholar 

  31. Velmurugan M, Chen SM (2017) Sci Rep 7(1):653

    PubMed  PubMed Central  Google Scholar 

  32. Nolin B, Jones RN (1956) Can J Chem 34:1393–1404

    Google Scholar 

  33. Zou JP, Liu HL, Luo JM et al (2016) ACS Appl Mater Interfaces 8:18140–18149

    CAS  PubMed  Google Scholar 

  34. Chen C, Liu BR, Ru Q et al (2016) J Power Sources 326:252–263

    CAS  Google Scholar 

  35. Fu SF, Zhu CZ, Song JH et al (2017) Adv Energy Mater 7:1700363

    Google Scholar 

  36. Gautier JL, Rios E, Gracia M et al (1997) Thin Solid Films 311:51–57

    CAS  Google Scholar 

  37. Naveen AN, Selladurai S (2015) RSC Adv 5:65139–65152

    CAS  Google Scholar 

  38. Hong WT, Risch M, Stoerzinger KA et al (2015) Energy Environ Sci 8:1404–1427

    CAS  Google Scholar 

  39. Qin CL, Ye ZG, Guang M et al (2018) J Electrochem Soc 14:A3496–A3503

    Google Scholar 

  40. Li K, Zhang RG, Gao RJ et al (2019) Appl Catal B Environ 244:536–545

    CAS  Google Scholar 

  41. Jiang Y, Deng YP, Fu J et al (2018) Adv Energy Mater 8:1702900

    Google Scholar 

  42. Muraliganth T, Manthiram A (2010) J Phys Chem C 36:15530–15540

    Google Scholar 

  43. Yi D, Lu F, Zhang FC et al (2020) Angew Chem Int Ed 59:15855–15859

    CAS  Google Scholar 

  44. Cheng FY, Shen J, Peng B et al (2011) Nat Chem 3:79–84

    CAS  PubMed  Google Scholar 

  45. Wang JK, Gao R, Zhou D et al (2017) ACS Catal 7:6533–6541

    CAS  Google Scholar 

  46. Ma TY, Zheng Y, Dai S et al (2014) J Mater Chem A 2:8676–8682

    CAS  Google Scholar 

  47. Cao X, Jin C, Lu FL et al (2014) J Electrochem Soc 5:H296–H300

    Google Scholar 

  48. Zhang TW, Li ZF, Wang LK et al (2018) ChemSusChem 11(16):2730–2736

    CAS  PubMed  Google Scholar 

  49. Li MF, Zhao ZP, Cheng T et al (2016) Science 354:1414–1419

    CAS  PubMed  Google Scholar 

  50. Zhou RF, Zheng Y, Jaroniec M et al (2016) ACS Catal 6:4720–4728

    CAS  Google Scholar 

  51. Li J, Wang YC, Zhou T et al (2015) J Am Chem Soc 137:14305–14312

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 21808172), Tianjin Municipal Natural Science Foundation (Nos. 18JCQNJC05800, 18JCZDJC37200), Innovation Fund for Young Talents of TUST and the Fund of Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization (No. BCERE201909), Yangtze Scholars and Innovative Research Team in University (IRT-17R81), Innovative Research Team of Tianjin Municipral Education Commission (TD13-5008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10562_2020_3381_MOESM1_ESM.docx

Schematic patterns (Fig. S1), FT-IR images (Fig. S2), SEM images (Fig. S3), XRD patterns (Fig. S4), BET curves (Fig. S5), Full XPS spectrum (Fig. S6 and S7), polarization curves (Fig. S8, S9 and S10), Comparisons of electrocatalytic activity (Table S1), Recent research (Table S2), BET data (Table S3), XPS data (Table S4, S5 and S7). (DOCX 2480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Wang, S., Cheng, P. et al. Controllable Fabrication of Co3−xMnxO4 with Tunable External Co3+/Co2+ Ratio for Promoted Oxygen Reduction Reaction. Catal Lett 151, 1810–1820 (2021). https://doi.org/10.1007/s10562-020-03381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03381-y

Keywords

Navigation