Skip to main content
Log in

Calcium Phosphate Catalysts for Ethanol Coupling to Butanol and Butadiene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic conversion of ethanol to butanol and butadiene at 633 K and atmospheric pressure (7 vol% ethanol) was studied over calcium phosphate materials pretreated over a wide temperature range. For calcium phosphate pretreated at or below 923 K, the resulting solid had an apatite structure identified by X-ray diffraction and strong acid sites probed by triethylamine (TEA) adsorption microcalorimetry. The low temperature pretreated materials were not effective at ethanol coupling reactions but instead were highly selective to acid-catalyzed products ethene and diethyl ether. Pretreatment of calcium phosphate at 973 K transformed the apatite structure to β-tricalcium phosphate, which exposed both acid and base sites evaluated by TEA and CO2 adsorption microcalorimetry. High temperature pretreated calcium phosphate catalysts formed the coupling products butanol and butadiene during ethanol reaction. The butadiene selectivity was improved by supporting calcium phosphate on zirconia.

Graphic abstract

The influence of catalyst structure on the activity and selectivity of calcium phosphates was elucidated for the conversion of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Angelici C, Weckhuysen BM, Bruijnincx PCA (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. Chemsuschem 6(9):1595–1614

    CAS  PubMed  Google Scholar 

  2. Makshina EV, Dusselier M, Janssens W, Degrève J, Jacobs PA, Sels BF (2014) Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chem Soc Rev 43(22):7917–7953

    CAS  PubMed  Google Scholar 

  3. Sushkevich VL, Ivanova II (2017) Mechanistic study of ethanol conversion into butadiene over silver promoted zirconia catalysts. Appl Catal B Environ 215:36–49

    CAS  Google Scholar 

  4. Quattlebaum WM, Toussaint WJ, Dunn JT (1947) Deoxygenation of certain aldehydes and ketones: preparation of butadiene and styrene. J Am Chem Soc 69:593–599

    CAS  Google Scholar 

  5. Tsuchida T, Kubo J, Yoshioka T, Sakuma S, Takeguchi T, Ueda W (2008) Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J Catal 259(2):183–189

    CAS  Google Scholar 

  6. Kozlowski JT, Davis RJ (2013) Heterogeneous catalysts for the guerbet coupling of alcohols. ACS Catal 3(7):1588–1600

    CAS  Google Scholar 

  7. Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4(4):1078–1090

    CAS  Google Scholar 

  8. Angelici C, Velthoen MEZ, Weckhuysen BM, Bruijnincx PCA (2015) Influence of acid–base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2–MgO materials. Catal Sci Technol 5(5):2869–2879

    CAS  Google Scholar 

  9. León M, Díaz E, Ordóñez S (2011) Ethanol catalytic condensation over Mg-Al mixed oxides derived from hydrotalcites. Catal Today 164(1):436–442

    Google Scholar 

  10. Kvisle S, Aguero A, Sneeden RPA (1988) Transformation of ethanol into 1,3-butadiene over magnesium oxide/silica catalysts. Appl Catal 43(1):117–131

    CAS  Google Scholar 

  11. Niiyama H, Morii S, Echigoya E (1972) Butadiene formation from ethanol over silica–magnesia catalysts. Bull Chem Soc Jpn 45:655–659

    CAS  Google Scholar 

  12. Natta G, Rigamonti R (1947) X-ray and chemical examination of catalysts used in the manufacture of butadiene from alcohol. Chim Ind 29:239–243

    CAS  Google Scholar 

  13. Jones HE, Stahly EE, Corson BB (1949) Butadiene from ethanol reaction mechanism. J Am Chem Soc 71(5):1822–1828

    CAS  Google Scholar 

  14. Chung SH, Angelici C, Hinterding SOM, Weingarth M, Baldus M, Houben K, Weckhuysen BM, Bruijnincx PCA (2016) Role of magnesium silicates in wet-kneaded silica-magnesia catalysts for the Lebedev ethanol-to-butadiene process. ACS Catal 6(6):4034–4045

    CAS  Google Scholar 

  15. Makshina EV, Janssens W, Sels BF, Jacobs PA (2012) Catalytic study of the conversion of ethanol into 1,3-butadiene. Catal Today 198(1):338–344

    CAS  Google Scholar 

  16. Angelici C, Velthoen MEZ, Weckhuysen BM, Bruijnincx PCA (2014) Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO2-MgO catalysts. Chemsuschem 7(9):2505–2515

    CAS  PubMed  Google Scholar 

  17. Ochoa JV, Bandinelli C, Vozniuk O, Chieregato A, Malmusi A, Recchi C, Cavani F (2016) An analysis of the chemical, physical and reactivity features of MgO–SiO2 catalysts for butadiene synthesis with the Lebedev process. Green Chem 18(6):1653–1663

    CAS  Google Scholar 

  18. Shylesh S, Gokhale AA, Scown CD, Kim D, Ho CR, Bell AT (2016) From sugars to wheels: the conversion of ethanol to 1,3-butadiene over metal-promoted magnesia–silicate catalysts. Chemsuschem 9(12):1462–1472

    CAS  PubMed  Google Scholar 

  19. Toussaint WJ, Dunn JT, Jachson DR (1947) Production of butadiene from alcohol. Ind Eng Chem 39(2):120–125

    CAS  Google Scholar 

  20. Jones MD, Keir CG, Di Iulio C, Robertson RAM, Williams CV, Apperley DC (2011) Investigations into the conversion of ethanol into 1,3-butadiene. Catal Sci Technol 1(2):267–272

    CAS  Google Scholar 

  21. Sushkevich VL, Ivanova II, Ordomsky VV, Taarning E (2014) Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol. Chemsuschem 7(9):2527–2536

    CAS  PubMed  Google Scholar 

  22. Dagle VL, Flake MD, Lemmon TL, Lopez JS, Kovarik L, Dagle RA (2018) Effect of the SiO2 support on the catalytic performance of Ag/ZrO2/SiO2 catalysts for the single-bed production of butadiene from ethanol. Appl Catal B Environ 236:576–587

    CAS  Google Scholar 

  23. Hanspal S, Young ZD, Prillaman JT, Davis RJ (2017) Influence of surface acid and base sites on the Guerbet coupling of ethanol to butanol over metal phosphate catalysts. J Catal 352:182–190

    CAS  Google Scholar 

  24. Tsuchida T, Sakuma S, Takeguchi T, Ueda W (2006) Direct synthesis of n-butanol from ethanol over nonstoichiometric hydroxyapatite. Ind Eng Chem Res 45(25):8634–8642

    CAS  Google Scholar 

  25. Ogo S, Onda A, Yanagisawa K (2011) Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts. Appl Catal A Gen 402(1–2):188–195

    CAS  Google Scholar 

  26. Tsuchida T, Yoshioka T, Sakuma S, Takeguchi T, Ueda W (2008) Synthesis of biogasoline from ethanol over hydroxyapatite catalyst. Ind Eng Chem Res 47(5):1443–1452

    CAS  Google Scholar 

  27. Elliott JC (1994) Structure and chemistry of the apatites and other chemical orthophosphates. Elsevier BV, Amsterdam, pp 148–154

    Google Scholar 

  28. Diallo-Garcia S, Laurencin D, Krafft JM, Casale S, Smith ME, Lauron-Pernot H, Costentin G (2011) Influence of magnesium substitution on the basic properties of hydroxyapatites. J Phys Chem C 115(49):24317–24327

    CAS  Google Scholar 

  29. Kreidler ER, Hummel FA (1970) The crystal chemistry of apatite: structure fields of fluor- and chlorapatite. Am Min 55(1–2):170–184

    CAS  Google Scholar 

  30. Osman MB, Diallo Garcia S, Krafft JM, Methivier C, Blanchard J, Yoshioka T, Kubo J, Costentin G (2016) Control of calcium accessibility over hydroxyapatite by post-precipitation steps: influence on the catalytic reactivity toward alcohols. Phys Chem Chem Phys 18(40):27837–27847

    PubMed  Google Scholar 

  31. Young ZD, Hanspal S, Davis RJ (2016) Aldol condensation of acetaldehyde over titania, hydroxyapatite, and magnesia. ACS Catal 6(5):3193–3202

    CAS  Google Scholar 

  32. Sushkevich VL, Ivanova II, Taarning E (2015) Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver. Green Chem 17(4):2552–2559

    CAS  Google Scholar 

  33. Dai W, Zhang S, Yu Z, Yan T, Wu G, Guan N, Li L (2017) Zeolite structural confinement effects enhance one-pot catalytic conversion of ethanol to butadiene. ACS Catal 7(5):3703–3706

    CAS  Google Scholar 

  34. Bhattacharyya SK, Ganguly ND (1962) One-step catalytic conversion of ethanol to butadiene in the fixed bed II. Binary- and ternary-oxide catalysts. J Appl Chem 12:105–110

    CAS  Google Scholar 

  35. Hanspal S, Young ZD, Shou H, Davis RJ (2015) Multiproduct steady-state isotopic transient kinetic analysis of the ethanol coupling reaction over hydroxyapatite and magnesia. ACS Catal 5(3):1737–1746

    CAS  Google Scholar 

  36. Ho CR, Shylesh S, Bell AT (2016) Mechanism and kinetics of ethanol coupling to butanol over hydroxyapatite. ACS Catal 6(2):939–948

    CAS  Google Scholar 

  37. Hill IM, Hanspal S, Young ZD, Davis RJ (2015) DRIFTS of probe molecules adsorbed on magnesia, zirconia, and hydroxyapatite catalysts. J Phys Chem C 119(17):9186–9197

    CAS  Google Scholar 

  38. Silvester L, Lamonier JF, Faye J, Capron M, Vannier RN, Lamonier C, Dubois JL, Couturier JL, Calais C, Dumeignil F (2015) Reactivity of ethanol over hydroxyapatite-based Ca-enriched catalysts with various carbonate contents. Catal Sci Technol 5(5):2994–3006

    CAS  Google Scholar 

  39. Joris SJ, Amberg CH (1971) The nature of deficiency in nonstoichiometric hydroxyapatites. I. Catalytic activity of calcium and strontium hydroxyapatites. J Phys Chem 75(20):3167–3171

    CAS  Google Scholar 

  40. Diallo-Garcia S, Ben OM, Krafft JM, Casale S, Thomas C, Kubo J, Costentin G (2014) Identification of surface basic sites and acid-base pairs of hydroxyapatite. J Phys Chem C 118(24):12744–12757

    CAS  Google Scholar 

  41. Tsuchida T, Kubo J, Yoshioka T, Sakuma S, Takeguchi T, Ueda W (2009) Influence of preparation factors on Ca/P ratio and surface basicity of hydroxyapatite catalyst. J Jpn Pet Inst 52(2):51–59

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Catalysis Science Program, under Award # DE-FG02-95ER14549.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Davis.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prillaman, J.T., Miyake, N. & Davis, R.J. Calcium Phosphate Catalysts for Ethanol Coupling to Butanol and Butadiene. Catal Lett 151, 648–657 (2021). https://doi.org/10.1007/s10562-020-03342-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03342-5

Keywords

Navigation