Skip to main content
Log in

The LaCo1−xVxO3 Catalyst for CO Oxidation in Rich H2 Stream

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The LaCo1−xVxO3 catalysts for CO oxidation in H2 rich stream were studied. These perovskite-type oxides with variable amounts of vanadium (x = 0, 0.05 and 0.1) were synthesized by modified citrate method. It was found that the modification in LaCoO3 perovskite after vanadium addition affected directly the structure and morphology leading to decrease in the crystallite size and increase in BET surface area. XPS results confirmed quantitatively the higher presence of V4+ species at the surface of the modified perovskite. The existence of Co2+ was reported to facilitate the interplay between Co2+/Co3+ and V5+/V4+ redox couples, which can enhance the lattice oxygen mobility and create interfacial active sites of CoOx/V2O5. Tests during 20 h on stream at 250 °C showed excellent stability, high resistance to coke deposition and no sintering.

Graphic Abstract

Perovskite modified by addition of vanadium LaCo1−xVxO3 for preferential CO oxidation in H2-rich stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Magalhães RNSH, Toniolo FS, Da Silva VT, Schmal M (2010) Selective CO oxidation reaction (SELOX) over cerium-doped LaCoO3 perovskite catalysts. Appl Catal A Gen 388:216–224. https://doi.org/10.1016/j.apcata.2010.08.052

    Article  CAS  Google Scholar 

  2. Dreyer JAH, Grossmann HK, Chen J et al (2015) Preferential oxidation of carbon monoxide over Pt-FeOx/CeO2 synthesized by two-nozzle flame spray pyrolysis. J Catal 329:248–261. https://doi.org/10.1016/j.jcat.2015.05.003

    Article  CAS  Google Scholar 

  3. Tosti S (2010) Overview of Pd-based membranes for producing pure hydrogen and state of art at ENEA laboratories. Int J Hydrogen Energy 35:12650–12659. https://doi.org/10.1016/j.ijhydene.2010.07.116

    Article  CAS  Google Scholar 

  4. Alihosseinzadeh A, Nematollahi B, Rezaei M, Lay EN (2015) CO methanation over Ni catalysts supported on high surface area mesoporous nanocrystalline γ-Al2O3 for CO removal in H2-rich stream. Int J Hydrogen Energy 40:1809–1819. https://doi.org/10.1016/j.ijhydene.2014.11.138

    Article  CAS  Google Scholar 

  5. Park ED, Lee D, Lee HC (2009) Recent progress in selective CO removal in a H2-rich stream. Catal Today 139:280–290. https://doi.org/10.1016/j.cattod.2008.06.027

    Article  CAS  Google Scholar 

  6. Liu K, Wang A, Zhang T (2012) Recent advances in preferential oxidation of co reaction over platinum group metal catalysts. ACS Catal 2:1165–1178. https://doi.org/10.1021/cs200418w

    Article  CAS  Google Scholar 

  7. Park JW, Jeong JH, Yoon WL et al (2005) Selective oxidation of CO in hydrogen-rich stream over Cu–Ce catalyst promoted with transition metals. Int J Hydrogen Energy 30:209–220. https://doi.org/10.1016/j.ijhydene.2004.04.016

    Article  CAS  Google Scholar 

  8. Souza M, Ribeiro N, Schmal M (2007) Influence of the support in selective CO oxidation on Pt catalysts for fuel cell applications. Int J Hydrogen Energy 32:425–429. https://doi.org/10.1016/j.ijhydene.2006.10.057

    Article  CAS  Google Scholar 

  9. Kumar J, Deo G, Kunzru D (2016) Preferential oxidation of carbon monoxide on Pt/γ-Al2O3 catalyst: effect of adding ceria and nickel. Int J Hydrogen Energy 41:18494–18501. https://doi.org/10.1016/j.ijhydene.2016.08.109

    Article  CAS  Google Scholar 

  10. Iwasa N, Arai S, Arai M (2008) Selective oxidation of CO with modified Pd/ZnO catalysts in the presence of H2: effects of additives and preparation variables. Appl Catal B Environ 79:132–141. https://doi.org/10.1016/j.apcatb.2007.10.001

    Article  CAS  Google Scholar 

  11. Park JE, Park ED (2014) Optimal Ru particle size for selective CO oxidation in H2 over Ru/κ-Al2O3. Korean J Chem Eng 31:1985–1993. https://doi.org/10.1007/s11814-014-0140-1

    Article  CAS  Google Scholar 

  12. Ribeiro NFP, Mendes FMT, Perez CAC et al (2008) Selective CO oxidation with nano gold particles-based catalysts over Al2O3 and ZrO2. Appl Catal A Gen 347:62–71. https://doi.org/10.1016/j.apcata.2008.05.030

    Article  CAS  Google Scholar 

  13. Gawade P, Bayram B, Alexander AMC, Ozkan US (2012) Preferential oxidation of CO (PROX) over CoOx/CeO2 in hydrogen-rich streams: effect of cobalt loading. Appl Catal B Environ 128:21–30. https://doi.org/10.1016/j.apcatb.2012.06.032

    Article  CAS  Google Scholar 

  14. Chagas CA, de Souza EF, Manfro RL et al (2016) Copper as promoter of the NiO-CeO2 catalyst in the preferential CO oxidation. Appl Catal B Environ 182:257–265. https://doi.org/10.1016/j.apcatb.2015.09.033

    Article  CAS  Google Scholar 

  15. Gamarra D, Munuera G, Hungrı et al (2007) Structure–activity relationship in nanostructured copper—ceria-based preferential CO oxidation catalysts. J Phys Chem C 111:11026–11038. https://doi.org/10.1021/jp072243k

    Article  CAS  Google Scholar 

  16. Kondakindi RR, Kundu A, Karan K et al (2010) Characterization and activity of perovskite catalysts for autothermal reforming of dodecane. Appl Catal A Gen 390:271–280. https://doi.org/10.1016/j.apcata.2010.10.020

    Article  CAS  Google Scholar 

  17. Merino NA, Barbero BP, Grange P, Cadús LE (2005) La1−xCaxCoO3 perovskite-type oxides: preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane. J Catal 231:232–244. https://doi.org/10.1016/j.jcat.2005.01.003

    Article  CAS  Google Scholar 

  18. Sun S, Yang L, Pang G, Feng S (2011) Surface properties of Mg doped LaCoO3 particles with large surface areas and their enhanced catalytic activity for CO oxidation. Appl Catal A Gen 401:199–203. https://doi.org/10.1016/j.apcata.2011.05.015

    Article  CAS  Google Scholar 

  19. Seyfi B, Baghalha M, Kazemian H (2009) Modified LaCoO3 nano-perovskite catalysts for the environmental application of automotive CO oxidation. Chem Eng J 148:306–311. https://doi.org/10.1016/j.cej.2008.08.041

    Article  CAS  Google Scholar 

  20. Pereñíguez R, Hueso JL, Gaillard F et al (2012) Study of oxygen reactivity in La1−xSrxCoO3-δ perovskites for total oxidation of toluene. Catal Letters 142:408–416. https://doi.org/10.1007/s10562-012-0799-z

    Article  CAS  Google Scholar 

  21. Ali SM, Al-Otaibi HM (2019) The distinctive sensing performance of cobalt ion in LaBO3 perovskite (B = Fe, Mn, Ni, or Cr) for hydrazine electrooxidation. J Electroanal Chem 851:113443. https://doi.org/10.1016/j.jelechem.2019.113443

    Article  CAS  Google Scholar 

  22. Zhang C, Hua W, Wang C et al (2013) The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission. Appl Catal B Environ 134–135:310–315. https://doi.org/10.1016/j.apcatb.2013.01.031

    Article  CAS  Google Scholar 

  23. Li H, Yu K, Wan C et al (2017) Comparison of the nickel addition patterns on the catalytic performances of LaCoO3 for low-temperature CO oxidation. Catal Today 281:534–541. https://doi.org/10.1016/j.cattod.2016.05.027

    Article  CAS  Google Scholar 

  24. Sartipi S, Khodadadi AA, Mortazavi Y (2008) Pd-doped LaCoO3 regenerative catalyst for automotive emissions control. Appl Catal B Environ 83:214–220. https://doi.org/10.1016/j.apcatb.2008.02.014

    Article  CAS  Google Scholar 

  25. Wang Y, Cui X, Li Y et al (2013) A simple co-nanocasting method to synthesize high surface area mesoporous LaCoO3 oxides for CO and NO oxidations. Microporous Mesoporous Mater 176:8–15. https://doi.org/10.1016/j.micromeso.2013.03.033

    Article  CAS  Google Scholar 

  26. Zhang J, Tan D, Meng Q et al (2015) Structural modification of LaCoO3 perovskite for oxidation reactions: the synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance. Appl Catal B Environ 172–173:18–26. https://doi.org/10.1016/j.apcatb.2015.02.006

    Article  CAS  Google Scholar 

  27. Zhang C, Wang C, Zhan W et al (2013) Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts. Appl Catal B Environ 129:509–516. https://doi.org/10.1016/j.apcatb.2012.09.056

    Article  CAS  Google Scholar 

  28. Onrubia JA, Pereda-Ayo B, De-La-Torre U, González-Velasco JR (2017) Key factors in Sr-doped LaBO3 (B = Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification. Appl Catal B Environ 213:198–210. https://doi.org/10.1016/j.apcatb.2017.04.068

    Article  CAS  Google Scholar 

  29. Białobok B, Trawczyński J, Miśta W, Zawadzki M (2007) Ethanol combustion over strontium- and cerium-doped LaCoO3 catalysts. Appl Catal B Environ 72:395–403. https://doi.org/10.1016/j.apcatb.2006.12.006

    Article  CAS  Google Scholar 

  30. Kumar DA, Selvasekarapandian S, Nithya H et al (2013) Effect of calcium doping on LaCoO3 prepared by Pechini method. Powder Technol 235:140–147. https://doi.org/10.1016/j.powtec.2012.09.030

    Article  CAS  Google Scholar 

  31. Crapanzano S, Babich IV, Lefferts L (2010) The effect of V in La2Ni1 xVxO 4+1.5x+δ on selective oxidative dehydrogenation of propane: Stabilization of lattice oxygen. Appl Catal A Gen 385:14–21. https://doi.org/10.1016/j.apcata.2010.05.002

    Article  CAS  Google Scholar 

  32. Crapanzano S, Babich IV, Lefferts L (2010) Effect of V in La2NixV1−xO4+δ on selective oxidative dehydrogenation of propane. Appl Catal A Gen 378:144–150. https://doi.org/10.1016/j.apcata.2010.02.012

    Article  CAS  Google Scholar 

  33. Crapanzano S, Babich IV, Lefferts L (2013) The 1 in La2Ni0.9V0.1O4.15+δ on selective oxidative dehydrogenation of propane. Catal Today 203:17–23. https://doi.org/10.1016/j.cattod.2012.04.041

    Article  CAS  Google Scholar 

  34. Huotari J, Cao W, Niu Y et al (2016) Separation of valence states in thin films with mixed V2O5 and V7O16 phases. J Electron Spectros Relat Phenomena 211:47–54. https://doi.org/10.1016/j.elspec.2016.06.001

    Article  CAS  Google Scholar 

  35. Chagas CA, Toniolo FS, Magalhães RNSH, Schmal M (2012) Alumina-supported LaCoO3 perovskite for selective CO oxidation (SELOX). Int J Hydrogen Energy 37:5022–5031. https://doi.org/10.1016/j.ijhydene.2011.12.052

    Article  CAS  Google Scholar 

  36. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219. https://doi.org/10.1016/S0920-5861(98)00050-9

    Article  CAS  Google Scholar 

  37. Toniolo FS, Magalhães RNSH, Perez CAC, Schmal M (2012) Structural investigation of LaCoO3 and LaCoCuO3 perovskite-type oxides and the effect of Cu on coke deposition in the partial oxidation of methane. Appl Catal B Environ 117–118:156–166. https://doi.org/10.1016/j.apcatb.2012.01.009

    Article  CAS  Google Scholar 

  38. Huang L, Bassir M, Kaliaguine S (2005) Reducibility of Co3+ in perovskite-type LaCoO3 and promotion of copper on the reduction of Co3+ in perovskite-type oxides. Appl Surf Sci 243:360–375. https://doi.org/10.1016/j.apsusc.2004.09.079

    Article  CAS  Google Scholar 

  39. Koranne MM, Goodwin Jr, Marcelin G (1994) Characterization of silica- and alumina-supported vanadia catalysts using temperature programmed reduction. J Catal 148:369–377

    Article  CAS  Google Scholar 

  40. Arena F, Giordano N, Parmaliana A (1997) Working Mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde. J Catal 167:66–76

    Article  CAS  Google Scholar 

  41. Berndt H, Martin A, Brückner A et al (2000) Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde. J Catal 191:384–400. https://doi.org/10.1006/jcat.1999.2786

    Article  CAS  Google Scholar 

  42. Tang F, Zhuang K, Yang F et al (2012) Effect of dispersion state and surface properties of supported vanadia on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of NO by NH3. Chinese J Catal 33:933–940. https://doi.org/10.1016/S1872-2067(11)60365-3

    Article  CAS  Google Scholar 

  43. Sokolovskii V, Arena F, Coluccia S, Parmaliana A (1998) Coordination symmetry and reduction features of V ions in V2O5/SiO2 catalysts: relevance to the partial oxidation of light alkanes. J Catal 173:238–242. https://doi.org/10.1006/jcat.1997.1895

    Article  CAS  Google Scholar 

  44. Arena F, Giordano N, Parmaliana A (1997) Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde: II: Redox properties and reactivity of SiO2, MoO3/SiO2, V2O5/SiO2, TiO2, and V2O5/TiO2 systems. J Catal 167:66–76. https://doi.org/10.1006/jcat.1997.1546

    Article  CAS  Google Scholar 

  45. Natile MM, Ugel E, Maccato C, Glisenti A (2007) LaCoO3: Effect of synthesis conditions on properties and reactivity. Appl Catal B Environ 72:351–362. https://doi.org/10.1016/j.apcatb.2006.11.011

    Article  CAS  Google Scholar 

  46. Benayad A, Martinez H, Gies A et al (2006) XPS investigations achieved on the first cycle of V2O5 thin films used in lithium microbatteries. J Electron Spectros Relat Phenomena 150:1–10. https://doi.org/10.1016/j.elspec.2005.09.001

    Article  CAS  Google Scholar 

  47. Majjane A, Chahine A, Et-Tabirou M et al (2014) X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses. Mater Chem Phys 143:779–787. https://doi.org/10.1016/j.matchemphys.2013.10.013

    Article  CAS  Google Scholar 

  48. Gharetape SJ, Singh MP, Razavi FS et al (2011) Effect of vanadium deficiency on properties of polycrystalline LaVO3. Appl Phys Lett 98:1–4. https://doi.org/10.1063/1.3549179

    Article  CAS  Google Scholar 

  49. Jin Z, Hu R, Wang H et al (2019) One-step impregnation method to prepare direct Z-scheme LaCoO3/g-C3N4 heterojunction photocatalysts for phenol degradation under visible light. Appl Surf Sci 491:432–442. https://doi.org/10.1016/j.apsusc.2019.06.143

    Article  CAS  Google Scholar 

  50. Zeng K, Li X, Wang C et al (2020) Three-dimensionally macroporous MnZrOx catalysts for propane combustion: synergistic structure and doping effects on physicochemical and catalytic properties. J Colloid Interface Sci 572:281–296. https://doi.org/10.1016/j.jcis.2020.03.093

    Article  CAS  PubMed  Google Scholar 

  51. Hua W, Zhang C, Guo Y et al (2019) An efficient SnyMn1-yOx composite oxide catalyst for catalytic combustion of vinyl chloride emissions. Appl Catal B Environ 255:117748. https://doi.org/10.1016/j.apcatb.2019.117748

    Article  CAS  Google Scholar 

  52. Wang C, Hua W, Chai G et al (2019) Insights into the morphological effect of Co3O4 crystallite on catalytic oxidation of vinyl chloride. Catalysts 9:1–10. https://doi.org/10.3390/catal9050408

    Article  CAS  Google Scholar 

  53. Luo Y, Wang K, Zuo J et al (2017) Enhanced activity for total benzene oxidation over SBA-15 assisted electrospun LaCoO3. Mol Catal 436:259–266. https://doi.org/10.1016/j.mcat.2017.04.030

    Article  CAS  Google Scholar 

  54. Liang H, Hong Y, Zhu C et al (2013) Influence of partial Mn-substitution on surface oxygen species of LaCoO3 catalysts. Catal Today 201:98–102. https://doi.org/10.1016/j.cattod.2012.04.036

    Article  CAS  Google Scholar 

  55. Wang H, Liu J, Zhao Z et al (2012) Comparative study of nanometric Co-, Mn- and Fe-based perovskite-type complex oxide catalysts for the simultaneous elimination of soot and NOx from diesel engine exhaust. Catal Today 184:288–300. https://doi.org/10.1016/j.cattod.2012.01.005

    Article  CAS  Google Scholar 

  56. Hryha E, Rutqvist E, Nyborg L (2012) Stoichiometric vanadium oxides studied by XPS. Surf Interface Anal 44:1022–1025. https://doi.org/10.1002/sia.3844

    Article  CAS  Google Scholar 

  57. Machocki A, Ioannides T, Stasinska B et al (2004) Manganese-lanthanum oxides modified with silver for the catalytic combustion of methane. J Catal 227:282–296. https://doi.org/10.1016/j.jcat.2004.07.022

    Article  CAS  Google Scholar 

  58. Ponce S, Peña MA, Fierro JLG (2000) Surface properties and catalytic performance in methane combustion of SR-substituted lanthanum manganites. Appl Catal B Environ 24:193–205. https://doi.org/10.1016/S0926-3373(99)00111-3

    Article  CAS  Google Scholar 

  59. Schmal M, Perez C, Magalhães RNSH (2014) Synthesis and characterization of perovskite-type oxides La1−xMxCoO3 (M = Ce, Sr) for the selective CO oxidation (SELOX). Top Catal 57:1103–1111. https://doi.org/10.1007/s11244-014-0275-7

    Article  CAS  Google Scholar 

  60. Mueller DN, MacHala ML, Bluhm H, Chueh WC (2015) Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat Commun. https://doi.org/10.1038/ncomms7097

    Article  PubMed  PubMed Central  Google Scholar 

  61. Van Spronsen MA, Frenken JWM, Groot IMN (2017) Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chem Soc Rev 46:4347–4374. https://doi.org/10.1039/c7cs00045f

    Article  CAS  PubMed  Google Scholar 

  62. Jan A, Shin J, Ahn J et al (2019) Promotion of Pt/CeO2 catalyst by hydrogen treatment for low-temperature CO oxidation. RSC Adv 9:27002–27012. https://doi.org/10.1039/c9ra05965b

    Article  CAS  Google Scholar 

  63. Navarro RM, Alvarez-Galvan MC, Villoria JA et al (2007) Effect of Ru on LaCoO3 perovskite-derived catalyst properties tested in oxidative reforming of diesel. Appl Catal B Environ 73:247–258. https://doi.org/10.1016/j.apcatb.2006.12.013

    Article  CAS  Google Scholar 

  64. Zhou M, Cai L, Bajdich M et al (2015) Enhancing catalytic CO oxidation over Co3O4 nanowires by substituting Co2+ with Cu2+. ACS Catal 5:4485–4491. https://doi.org/10.1021/acscatal.5b00488

    Article  CAS  Google Scholar 

  65. Ramesh S, Yang EH, Jung JS, Moon DJ (2015) Copper decorated perovskite an efficient catalyst for low temperature hydrogen production by steam reforming of glycerol. Int J Hydrogen Energy 40:11428–11435. https://doi.org/10.1016/j.ijhydene.2015.02.013

    Article  CAS  Google Scholar 

  66. Moradi GR, Rahmanzadeh M, Khosravian F (2014) The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for methane dry reforming. J CO2 Util 6:7–11. https://doi.org/10.1016/j.jcou.2014.02.001

    Article  CAS  Google Scholar 

  67. Zhao B, Yan B, Yao S et al (2018) LaFe0.9Ni0.1O3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane. J Catal 358:168–178. https://doi.org/10.1016/j.jcat.2017.12.012

    Article  CAS  Google Scholar 

  68. Mousavi M, Nakhaei Pour A (2019) Performance and structural features of LaNi0.5Co0.5O3 perovskite oxides for the dry reforming of methane: Influence of the preparation method. New J Chem 43:10763–10773. https://doi.org/10.1039/c9nj01805k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank CNPq (Conselho Nacional de Desenvolvimento Científico) and FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) for financial support this work. The authors would like to thank LAQUIS (Laboratório de Química de Superfícies) for the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Alberto Chagas or Martin Schmal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chagas, C.A., Magalhães, R.N.S.H. & Schmal, M. The LaCo1−xVxO3 Catalyst for CO Oxidation in Rich H2 Stream. Catal Lett 151, 409–421 (2021). https://doi.org/10.1007/s10562-020-03303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03303-y

Keywords

Navigation