Skip to main content

Advertisement

Log in

Platinum Island-on-Copper–Nickel Alloy Nanoparticle/Carbon Trimetallic Nanocatalyst for Selective Hydrogenation of Cinnamaldehyde

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Two series of catalysts, i.e., [Ni/C, Cu/C and CuNi/C] and [Pt–Ni/C, Pt–Cu/C and Pt–CuNi/C] were prepared by liquid phase chemical reduction and galvanic replacement, respectively. Pt/C was synthesized via an impregnation method. The nanostructures of these catalysts were tuned by being reduced in N2 + H2. Their nanostructures were characterized by TG, XPS, XRD, TEM, HRTEM and STEM–EDS elemental analysis techniques. The catalysts, which had unique nanostructures resulted from the loading of platinum islands on the transition metal related nanoparticles (i.e., Pt–Ni/C with Pt-on-Ni/Ni(OH)2, Pt–Cu/C-reduced with Pt-on-Cu/CuO, Pt–CuNi/C-reduced with Pt-on-CuNi alloy), exhibited much more excellent catalytic performance (conversion of cinnamaldehyde: 100.0%, selectivity to cinnamyl alcohol: 62.9%, 64.6% and 72.6%, respectively) than the catalysts with platinum–transition metal alloy structure (e.g. Pt–Ni/C-reduced with PtNi alloy) and transition metal/carbon for the selective hydrogenation of cinnamaldehyde (80 °C, 5.0 MPa H2, 1 h). The Pt–CuNi/C-reduced catalyst also showed superior stability in cinnamaldehyde hydrogenation. The outstanding performance of Pt–Ni/C, Pt–Cu/C-reduced and Pt–CuNi/C-reduced catalysts for cinnamaldehyde hydrogenation was attributed to the synergistic effect and interaction of platinum and non-noble metal related nanoparticles.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jothiramalingam R, Wang MK (2009) Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Ind Eng Chem Res 48:6162–6172

    CAS  Google Scholar 

  2. Zhu L, Jiang Y, Zheng J et al (2015) Ultrafine nanoparticle-supported Ru-nanoclusters with ultrahigh catalytic activity. Small 11:4385–4393

    CAS  PubMed  Google Scholar 

  3. Schwach P, Pan X, Bao X (2017) Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem Rev 117:8497–8520

    CAS  PubMed  Google Scholar 

  4. Tirumala RTA, Dadgar AP, Mohammadparast F et al (2019) Homogeneous versus heterogeneous catalysis in Cu2O-nanoparticle-catalyzed C-C coupling reactions. Green Chem 21:5284–5290

    Google Scholar 

  5. Kim S, Kwon EE, Kim YT et al (2019) Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem 21:3715–3743

    CAS  Google Scholar 

  6. Wu QF, Zhang C, Arai M et al (2019) Pt/TiH2 catalyst for ionic hydrogenation via stored hydrides in the presence of gaseous H2. ACS Catal 9:6425–6434

    CAS  Google Scholar 

  7. Luza L, Gual A, Fernandes JA et al (2019) Tunneling effects in confined gold nanoparticle hydrogenation catalysts. Phys Chem Chem Phys 21:16615–16622

    CAS  PubMed  Google Scholar 

  8. Gu H, Xu X, Chen AA et al (2013) Separate deposition of gold and palladium nanoparticles on ordered mesoporous carbon and evaluation of their catalytic activity for cinnamaldehyde hydrogenation under atmospheric condition. Catal Commun 41:65–69

    CAS  Google Scholar 

  9. Coq B, Kumbhar PS, Moreau C et al (1994) Zirconia-supported monometallic Ru and bimetallic Ru–Sn, Ru–Fe catalysts: role of metal support interaction in the hydrogenation of cinnamaldehyde. J Phys Chem 98:10180–10188

    CAS  Google Scholar 

  10. Yuan X, Zheng J, Zhang Q et al (2014) Liquid-phase hydrogenation of cinnamaldehyde over Cu–Au/SiO2 catalysts. AICHE J 60:3300–3311

    CAS  Google Scholar 

  11. Chatterjee M, Ikushimaa Y, Zhao F (2003) Completely selective hydrogenation of trans-cinnamaldehyde to cinnamyl alcohol promoted by a Ru–Pt bimetallic catalyst supported on MCM-48 in supercritical carbon dioxide. N J Chem 27:510–513

    CAS  Google Scholar 

  12. Wang S, Xin Z, Huang X et al (2017) Nanosized Pd–Au bimetallic phases on carbon nanotubes for selective phenylacetylene hydrogenation. Phys Chem Chem Phys 19:6164–6168

    CAS  PubMed  Google Scholar 

  13. Dietrich C, Schild D, Wang W et al (2017) Bimetallic Pt/Sn-based nanoparticles in ionic liquids as nanocatalysts for the selective hydrogenation of cinnamaldehyde. Z Anorg Allg Chem 643:120–129

    CAS  Google Scholar 

  14. Saranya A, Vivekanandan G, Ramaswamy KK et al (2018) Bimetallic Co–Ni/TiO2 catalysts for selective hydrogenation of cinnamaldehyde. Res Chem Intermed 44:6703–6720

    Google Scholar 

  15. Rong Z, Sun Z, Wang Y et al (2014) Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over graphene supported Pt–Co bimetallic catalysts. Catal Lett 144:980–986

    CAS  Google Scholar 

  16. Liao Z, Lan Y, Wang K et al (2018) In situ growing PtCo bimetallic catalyst on plant tannin-grafted collagen fiber for catalytic hydrogenation of cinnamaldehyde with desirable performance. Chem Res Chin Univ 34:285–289

    CAS  Google Scholar 

  17. Zhu L, Yang Z, Zheng J et al (2015) Decoration of Co/Co3O4 nanoparticles with Ru nanoclusters: a new strategy for design of highly active hydrogenation. J Mater Chem A 3:11716–11719

    CAS  Google Scholar 

  18. Mahata N, Gonçalves F, Pereira MFR et al (2008) Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst. Appl Catal A 339:159–168

    CAS  Google Scholar 

  19. Mäki-Arvela P, Hájek J, Salmi T et al (2005) Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Appl Catal A 292:1–49

    Google Scholar 

  20. Blaser HU, Malan C, Pugin B et al (2003) Selective hydrogenation for fine chemicals: recent trends and new developments. Adv Synth Catal 345:103–151

    CAS  Google Scholar 

  21. Sorokina TV, Dollimore D, Alexander KS (2002) Evaporation of the fragrance component, cinnamyl alcohol, using simultaneous TG–DTA. Thermochim Acta 392:315–321

    Google Scholar 

  22. Liu H, Mei Q, Li S et al (2018) Selective Hydrogenation of unsaturated aldehydes over Pt nanoparticles promoted by cooperation of steric and electronic effects. Chem Commun 54:908–911

    CAS  Google Scholar 

  23. Siddqui N, Sarkar B, Pendem C et al (2017) Highly selective transfer hydrogenation of α, β-unsaturated carbonyl compounds using Cu-based nanocatalysts. Catal Sci Technol 7:2828–2837

    CAS  Google Scholar 

  24. Piqueras CM, Puccia V, Vega DA et al (2016) Selective hydrogenation of cinnamaldehyde in supercritical CO2 over Me–CeO2 (Me = Cu, Pt, Au): insight of the role of Me–Ce interaction. Appl Catal B 185:265–271

    CAS  Google Scholar 

  25. Wei S, Zhao Y, Fan G et al (2017) Structure-dependent selective hydrogenation of cinnamaldehyde over high-surface-area CeO2–ZrO2, composites supported Pt nanoparticles. Chem Eng J 322:234–245

    CAS  Google Scholar 

  26. He S, Xie L, Che M et al (2016) Chemoselective hydrogenation of α, β-unsaturated aldehydes on hydrogenated MoOx nanorods supported iridium nanoparticles. J Mol Catal A 425:248–254

    CAS  Google Scholar 

  27. Gallezot P, Richard D (1998) Selective hydrogenation of α, β-unsaturated aldehydes. Catal Rev 40:81–126

    CAS  Google Scholar 

  28. Yan W, Guo Z, Jia X et al (2012) Model-aided optimization and analysis of multi-component catalysts: application to selective hydrogenation of cinnamaldehyde. Chem Eng Sci 76:26–36

    CAS  Google Scholar 

  29. Ide MS, Hao B, Neurock M et al (2012) Mechanistic insights on the hydrogenation of α, β-unsaturated ketones and aldehydes to unsaturated alcohols over metal catalysts. ACS Catal 2:671–683

    CAS  Google Scholar 

  30. Yuan T, Liu D, Gu J et al (2019) The low dimensional Co-based nanorods as a novel platform for selective hydrogenation of cinnamaldehyde. Catal Lett 149:2906–2915

    CAS  Google Scholar 

  31. Yuan T, Liu D, Pan Y et al (2018) Magnetic anchored CoPt bimetallic nanoparticles as selective hydrogenation catalyst for cinnamaldehyde. Catal Lett 149:851–859

    Google Scholar 

  32. Zhou A, Dou Y, Zhou J et al (2019) Rational localization of metal nanoparticles in yolk-shell MOFs for enhancing catalytic performance in selective hydrogenation of cinnamaldehyde. ChemSusChem 12:1–8

    Google Scholar 

  33. Fujita SI, Mitani H, Zhang C et al (2017) Pd and PdZn supported on ZnO as catalysts for the hydrogenation of cinnamaldehyde to hydrocinnamyl alcohol. Mol Catal 442:12–19

    CAS  Google Scholar 

  34. Shi YS, Yuan ZF, Wei Q et al (2016) Pt–FeOx/SiO2 catalysts prepared by galvanic displacement show high selectivity for cinnamyl alcohol production in the chemoselective hydrogenation of cinnamaldehyde. Catal Sci Technol 6:7033–7037

    CAS  Google Scholar 

  35. Zhu L, Zheng T, Yu C et al (2017) Platinum–nickel alloy nanoparticles supported on carbon for 3-pentanone hydrogenation. Appl Surf Sci 409:29–34

    CAS  Google Scholar 

  36. Dong Y, Li Y, Wang C et al (2001) Preparation of cuprous oxide particles of different crystallinity. J Colloid Interface Sci 243:85–89

    CAS  Google Scholar 

  37. Du F, Liu J, Guo Z (2009) Shape controlled synthesis of Cu2O and its catalytic application to synthesize amorphous carbon nanofibers. Mater Res Bull 44:25–29

    CAS  Google Scholar 

  38. Nobari N, Behboudnia M, Maleki R (2016) Palladium-free electroless deposition of pure copper film on glass substrate using hydrazine as reducing agent. Appl Surf Sci 385:9–17

    CAS  Google Scholar 

  39. Bai L, Yuan F, Tang Q (2008) Synthesis of nickel nanoparticles with uniform size via a modified hydrazine reduction route. Mater Lett 62:2267–2270

    CAS  Google Scholar 

  40. Gui Z, Fan R, Mo W et al (2003) Synthesis and characterization of reduced transition metal oxides and nanophase metals with hydrazine in aqueous solution. Mater Res Bull 38:169–176

    CAS  Google Scholar 

  41. Andal V, Buvaneswari G (2017) Effect of reducing agents in the conversion of Cu2O nanocolloid to Cu nanocolloid. Eng Sci Technol Int J 20:340–344

    Google Scholar 

  42. Zhu L, Sun H, Fu H et al (2015) Effect of ruthenium nickel bimetallic composition on the catalytic performance for benzene hydrogenation to cyclohexane. Appl Catal A 499:124–132

    CAS  Google Scholar 

  43. Zhang X, Zhou Y, Zhang B et al (2017) An improved galvanic replacement deposition method for synthesis of compact palladium coatings on copper substrates. Mater Lett 197:75–78

    CAS  Google Scholar 

  44. Zhu L, Shan S, Petkov V et al (2017) Ruthenium–nickel–nickel hydroxide nanoparticles for room temperature catalytic hydrogenation. J Mater Chem A 5:7869–7875

    CAS  Google Scholar 

  45. Teddy J, Falqui A, Corrias A et al (2011) Influence of particles alloying on the performances of Pt–Ru/CNT catalysts for selective hydrogenation. J Catal 278:59–70

    CAS  Google Scholar 

  46. Yang Z, Chen W, Zheng J et al (2018) Efficient low-temperature hydrogenation of acetone on bimetallic Pt–Ru/C catalyst. J Catal 363:52–62

    CAS  Google Scholar 

  47. Zhang X, Guo Y, Zhang P et al (2010) Superhydrophobic CuO@Cu2S nanoplate vertical arrays on copper surfaces. Mater Lett 64:1200–1203

    CAS  Google Scholar 

  48. Zhang Q, Fu M, Ning G et al (2019) Room temperature synthesis of Cu[Fe(CN)6]·XH2O cube derived ferric oxide@cupric oxide alloy ball on nitrogen-doped graphene as highly efficient electrochemical water splitting. Int J Hydrog Energy 44:28543–28555

    CAS  Google Scholar 

  49. Guo Y, Zhao C, Lin J et al (2017) Facile synthesis of supported copper manganese oxides catalysts for low temperature CO oxidation in confined spaces. Catal Commun 99:1–5

    CAS  Google Scholar 

  50. Wang Q, Liu Z, Zhang S et al (2019) Hydrothermal deposition of Cu2O–Ag nanoparticles co-sensitized TiO2 nanotube arrays and their enhanced photoelectrochemical performance. Sep Purif Technol 211:866–872

    CAS  Google Scholar 

  51. Li F, Dong B (2017) Construction of novel Z-scheme Cu2O/graphene/α-Fe2O3 nanotube arrays composite for enhanced photocatalytic activity. Ceram Int 43:16007–16012

    CAS  Google Scholar 

  52. Liu M, Wang J, Tian Q et al (2019) Mo-doped Cu/Co hybrid oxide nanoarrays: an enhanced electrocatalytic performance for the hydrogen evolution reaction. ChemElectroChem 6:1738–1744

    CAS  Google Scholar 

  53. Pike SD, White ER, Regoutz A et al (2017) Reversible redox cycling of well-defined, ultrasmall Cu/Cu2O nanoparticles. ACS Nano 11:2714–2723

    CAS  PubMed  Google Scholar 

  54. Yeh HH, Wen MC, Chang L et al (2019) Epitaxial growth of Cu2O on Cu substrate—a combinatorial substrate approach. J Cryst Growth 512:124–130

    CAS  Google Scholar 

  55. Goyal R, Sarkar B, Bag A et al (2016) Studies of synergy between metal–support interfaces and selective hydrogenation of HMF to DMF in water. J Catal 340:248–260

    CAS  Google Scholar 

  56. Lu S, Zhuang Z (2017) Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J Am Chem Soc 139:5156–5163

    CAS  PubMed  Google Scholar 

  57. Sun T, Shan N, Xu L et al (2018) General synthesis of 3D ordered macro-/mesoporous materials by templating mesoporous silica confined in opals. Chem Mater 30:1617–1624

    CAS  Google Scholar 

  58. Li H, Zhou P, Liu F et al (2019) Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries. Chem Sci 10:1374–1379

    CAS  PubMed  Google Scholar 

  59. Mei H, Mei Y, Zhang S et al (2018) Bimetallic-MOF derived accordion-like ternary composite for high-performance supercapacitors. Inorg Chem 57:10953–10960

    CAS  PubMed  Google Scholar 

  60. Kumar A, Yang X, Xu Q (2019) Ultrafine bimetallic Pt–Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: a highly efficient catalyst for dehydrogenation of hydrous hydrazine. J Mater Chem A 7:112–115

    CAS  Google Scholar 

  61. Zou X, Chen S, Wang Q et al (2019) Leaching- and sintering-resistant hollow or structurally ordered intermetallic PtFe alloy catalysts for oxygen reduction reactions. Nanoscale 11:20115–20122

    CAS  PubMed  Google Scholar 

  62. Wang L, Li Y, Xia M et al (2017) Ni nanoparticles supported on graphene layers: an excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J Power Sources 347:220–228

    CAS  Google Scholar 

  63. Yao W, Li FL, Li HX et al (2015) Fabrication of hollow Cu2O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. J Mater Chem A 3:4578–4585

    CAS  Google Scholar 

  64. Lu Y, Zhang N, Zhao Q et al (2015) Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries. Nanoscale 7:2770–2776

    CAS  PubMed  Google Scholar 

  65. Bi Y, Ren H, Chen B et al (2012) Synthesis monolithic copper-based aerogel with polyacrylic acid as template. J Sol–Gel Sci Technol 63:140–145

    CAS  Google Scholar 

  66. Lin Z, Li J, Li L et al (2017) Manipulating the hydrogen evolution pathway on composition-tunable CuNi nanoalloys. J Mater Chem A 5:773–781

    CAS  Google Scholar 

  67. Cocco F, Elsener B, Fantauzzi M et al (2016) Nanosized surface films on brass alloys by XPS and XAES. RSC Adv 6:31277–31289

    CAS  Google Scholar 

  68. Poulston S, Parlett PM, Stone P et al (1996) Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal 24:811–820

    CAS  Google Scholar 

  69. Nassr ABAA, Sinev I, Grünert W et al (2013) PtNi supported on oxygen functionalized carbon nanotubes: in depth structural characterization and activity for methanol electrooxidation. Appl Catal B 142:849–860

    Google Scholar 

  70. Sun Y, Li C, Zhang A (2016) Preparation of Ni/CNTs catalyst with high reducibility and their superior catalytic performance in benzene hydrogenation. Appl Catal A 522:180–187

    CAS  Google Scholar 

  71. Morales OD, Suspedra DF, Koper MTM (2016) The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem Sci 7:2639–2645

    Google Scholar 

  72. Deng X, Öztürk S, Weidenthaler C et al (2017) Iron-induced activation of ordered mesoporous nickel cobalt oxide electrocatalyst for the oxygen evolution reaction. ACS Appl Mater Interfaces 9:21225–21233

    CAS  PubMed  Google Scholar 

  73. Garcia AC, Touzalin T, Nieuwland C et al (2019) Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew Chem Int Ed 37:12999–13003

    Google Scholar 

  74. Mom R, Frevel L, Velasco-Vélez JJ (2019) The oxidation of platinum under wet conditions observed by electrochemical X-ray photoelectron spectroscopy. J Am Chem Soc 141:6537–6544

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu L, Zhang H, Ma N et al (2019) Tuning the interfaces in the ruthenium–nickel/carbon nanocatalysts for enhancing catalytic hydrogenation performance. J Catal 377:299–308

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support of this research by the National Natural Science Foundation of China (Grant No. 21763011), Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars (Grant No. 20192BCB23015), Youth Jinggang Scholars Program in Jiangxi Province ([2019]57). China Postdoctoral Science Foundation (Grant No. 2018M642597), Foundation of State Key Laboratory of Coal Conversion (Grant No. J20-21-609), Research Foundation of the Education Bureau of Jiangxi Province of China (GJJ190429), Postdoctoral Science Foundation of Jiangxi Province of China, Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology (JXUSTQJBJ2019002), Program of Technology Innovation Talents of Ganzhou.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Li or Lihua Zhu.

Ethics declarations

Conflict of interest

The authors declares no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, A., Ruan, L., Liao, J. et al. Platinum Island-on-Copper–Nickel Alloy Nanoparticle/Carbon Trimetallic Nanocatalyst for Selective Hydrogenation of Cinnamaldehyde. Catal Lett 151, 559–572 (2021). https://doi.org/10.1007/s10562-020-03295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03295-9

Keywords

Navigation