Skip to main content
Log in

Inducing the Catalytic Activity in SrFe12O19 Via Chemical Modification

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, we demonstrate that the catalytic activity could be induced in the hard magnetic strontium hexaferrite (SrFe12O19) system by replacing a small fraction of Fe by Cu. Nanocrystalline SrFe12O19 and SrCu0.3Fe11.7O19 samples were synthesized by a tartrate-gel method and their structural, microstructural, specific surface area and magnetic properties were studies. Subsequently, the nanocrystalline hexaferrite powders were employed as catalysts to drive 4-nitrophenol reduction reaction using the NaBH4 as the reducing agent. The progress of the catalytic reactions was evaluated using UV–visible spectrophotometer. The unsubstituted sample was found to be catalytically inactive whereas SrCu0.3Fe11.7O19 sample showed superior catalytic performance in transforming 4-nitrophenol to 4-aminophenol within 8 min. Reusability test confirmed that the SrCu0.3Fe11.7O19 catalyst retains its 100% activity even after five consecutive cycles. In addition, the effect of crystallite size of SrCu0.3Fe11.7O19 on the catalytic reduction reaction of 4-nitrophenol was investigated. The results indicated that the time taken to complete the reduction reaction has been increased as size of the crystallites increased, probably due to decrease in the large number of surface active sites of the catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zi ZF, Sun YP, Zhu XB, Yang ZR, Dai JM, Song WH (2008) J Magn Magn Mater 320:2746

    Article  CAS  Google Scholar 

  2. Shirk BT (1969) J Appl Phys 40:1294

    Article  CAS  Google Scholar 

  3. Cochardt A (1963) J Appl Phys 34:1273

    Article  CAS  Google Scholar 

  4. Smith J, Wijin HPJ (1965) Ferrites. Eindhoven, Amsterdam

    Google Scholar 

  5. Vinayasree S, Soloman MA, Sunny V, Mohanan P, Kurian P, Anantharaman MR (2013) Compos Sci Technol 82:69

    Article  CAS  Google Scholar 

  6. Fang Q, Zhong W, Jin Z, Du Y (1999) J Appl Phys 85:1667

    Article  CAS  Google Scholar 

  7. Tenaud P, Morel A, Kools F, Le Breton JM, Lechevallier L (2004) J Alloys Compd 370:331

    Article  CAS  Google Scholar 

  8. Auwal IA, Güner S, Güngüneş H, Baykal A (2016) Ceram Int 42:12995

    Article  CAS  Google Scholar 

  9. Liu X, Zhang T, Zhang L (2018) Sep Purif Technol 195:192

    Article  CAS  Google Scholar 

  10. Xie T, Liu C, Xu L, Yang J, Zhou W (2013) J Phys Chem C 117:24601

    Article  CAS  Google Scholar 

  11. Zhang Q-Y, Liu F-J, Gao P-A, Zhao X-M, Wang Li, Guo H-X (2019) Mater Res Express 6:095520

    Article  CAS  Google Scholar 

  12. Mishra DD, Tan G (2018) J Phys Chem Solids 123:157

    Article  CAS  Google Scholar 

  13. Mohammadi K, Sadeghi M, Azimirad R (2017) J Mater Sci Mater Electron 28:10042

    Article  CAS  Google Scholar 

  14. Ajeesha TL, Anantharaman A, Baby JN, George M (2020) J Nanosci Nanotechnol 20:1589

    Article  CAS  Google Scholar 

  15. Chen Y, Wu Q, Bu N, Wang J, Song Y (2019) Chem Eng J 373:192

    Article  CAS  Google Scholar 

  16. Yang Y, Mao Y, Wang B, Meng X, Han J, Wang C, Yang H (2016) RSC Adv 6:32430

    Article  CAS  Google Scholar 

  17. Kuroda K, Ishida T, Haruta M (2009) J Mol Catal A Chem 298:7

    Article  CAS  Google Scholar 

  18. Pandey S, Mishra SB (2014) Carbohydr Polym 113:525

    Article  CAS  Google Scholar 

  19. Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y (2011) Nanoscale 3:3357

    Article  CAS  Google Scholar 

  20. Harish S, Mathiyarasu J, Phani KLN, Yegnaraman V (2009) Catal Lett 128:197

    Article  CAS  Google Scholar 

  21. Goyal A, Bansal S, Singhal S (2014) Int J Hydrog Energy 39:4895

    Article  CAS  Google Scholar 

  22. Singh C, Goyal A, Singhal S (2014) Nanoscale 6:7959

    Article  CAS  Google Scholar 

  23. Anantharamaiah PN, Mondal S, Manasa KS, Saha S, Maya Pai M (2020) Ceram Int 46:1220

    Article  CAS  Google Scholar 

  24. Verma A, Kumar S, Chang W-K, Fu Y-P (2020) Dalton Trans 49:625

    Article  CAS  Google Scholar 

  25. Hamaloglu KO, Sag E, Kip C, Senlik E, Kaya BS, Tuncel A (2019) Front Chem Sci Eng 13:574

    Article  CAS  Google Scholar 

  26. Eshaq G, Wang S, Sun H, Sillanpaa M (2020) J Hazard Mater 382:121059

    Article  CAS  Google Scholar 

  27. Kibar G, Tuncel A (2018) J Inorg Organomet Polym Mater 28:2249

    Article  CAS  Google Scholar 

  28. Zhi L, Xu Y, Zhang S, Hu D, Liu J (2020) New J Chem 44:258

    Article  CAS  Google Scholar 

  29. Shashanka HM, Anantharamaiah PN, Joy PA (2019) Ceram Int 45:13592

    Article  CAS  Google Scholar 

  30. Anantharamaiah PN, Joy PA (2016) Phys Chem Chem Phys 18:10516

    Article  CAS  Google Scholar 

  31. Young RA (1993) The Rietveld method. Oxford University Press, New York

    Google Scholar 

  32. Rodríguez-Carvajal J (1993) Phys B 192:55

    Article  Google Scholar 

  33. Qiao L, You L, Zheng J, Jiang L, Sheng J (2017) J Magn Magn Mater 318:74

    Article  Google Scholar 

  34. Kanagesan S, Hashim M, Jesurani S, Kalaivani T, Ismail I, Ahmod CS (2013) J Mater Sci: Mater Electron 24:3881

    CAS  Google Scholar 

  35. Li Y, Shen J, Hu Y, Qiu S, Min G, Song Z, Sun Z, Li C (2015) Ind Eng Chem Res 54:9750

    Article  CAS  Google Scholar 

  36. Salaheldin HI (2017) Adv Nat Sci: Nanosci Nanotechnol 8:045001

    Google Scholar 

  37. Rocha M, Fernandes C, Pereira C, Rebelo SLH, Pereira MFR, Freire C (2015) RSC Adv 5:5131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.N. Anantharamaiah is indebted to Dr. P.A. Joy, CSIR-National Chemical Laboratory, Pune, for the VSM measurements. Sujoy Saha gratefully acknowledges Dr. D.S. Kothari Postdoctoral Fellowship, U.G.C. New Delhi

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Anantharamaiah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anantharamaiah, P.N., Mondal, S. & Saha, S. Inducing the Catalytic Activity in SrFe12O19 Via Chemical Modification. Catal Lett 151, 221–231 (2021). https://doi.org/10.1007/s10562-020-03292-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03292-y

Keywords

Navigation