Skip to main content
Log in

Using MOF-808 as a Promising Support to Immobilize Ru for Selective Hydrogenation of Levulinic Acid to γ-Valerolactone

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A stable Zr-based metal–organic framework (MOF), MOF-808, was used as a promising support to immobilize metallic Ru for the first time. The skeleton structure of MOF-808 can be well preserved during the immobilization process. Ru nanoparticles existed both inside and outside of the MOF cavities with good dispersion. The developed Ru/MOF-808 composite was found to be an efficient catalyst for the hydrogenation of biomass-derived levulinic acid (LA) to γ-valerolactone (GVL). Under mild reaction conditions, full conversion of LA (100%) with high selectivity to GVL (> 99%) was achieved. The catalyst recycling and hot filtration experiments indicate that Ru/MOF-808 possesses a good catalytic stability for the LA hydrogenation reaction, although some catalyst structure changes were observed. The good immobilization effect of MOF-808 for Ru may be related to the high binding affinity between the Zr6 nodes and Ru particles.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang D, Odoh SO, Wang TC, Farha OK, Hupp JT, Cramer CJ, Gagliardi L, Gates BC (2015) Metal−organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- and UiO-66-supported iridium complexes. J Am Chem Soc 137:7391–7396

    Article  CAS  Google Scholar 

  2. Moon HR, Lim D-W, Suh MP (2013) Fabrication of metal nanoparticles in metal–organic frameworks. Chem Soc Rev 42:1807–1824

    Article  CAS  Google Scholar 

  3. Yang Q, Xu Q, Jiang H-L (2017) Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 46:4774–4808

    Article  CAS  Google Scholar 

  4. Jiao L, Wang Y, Jiang H-L, Xu Q (2017) Metal–organic frameworks as platforms for catalytic applications. Adv Mater 29:1703663

    Google Scholar 

  5. Huang Y-B, Liang J, Wang X-S, Cao R (2017) Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev 46:126–157

    Article  CAS  Google Scholar 

  6. Li G, Zhao S, Zhang Y, Tang Z (2018) Metal–organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv Mater 30:1800702

    Article  Google Scholar 

  7. Bai Y, Dou Y, Xie L-H, Rutledge W, Li J-R, Zhou H-C (2016) Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45:2327–2367

    Article  CAS  Google Scholar 

  8. Feng J, Li M, Meng X (2019) Green oxidation of cyclohexanone to adipic acid over phosphotungstic acid encapsulated in UiO-66. Catal Lett 149:1504–1512

    Article  CAS  Google Scholar 

  9. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  Google Scholar 

  10. Furukawa H, Gándara F, Zhang Y-B, Jiang J, Queen WL, Hudson MR, Yaghi OM (2014) Water adsorption in porous metal−organic frameworks and related materials. J Am Chem Soc 136:4369–4381

    Article  CAS  Google Scholar 

  11. Zheng H-Q, Liu C-Y, Zeng X-Y, Chen J, Lü J, Lin R-G, Cao R, Lin Z-J, Su J-W (2018) MOF-808: a metal−organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing. Inorg Chem 57:9096–9104

    Article  CAS  Google Scholar 

  12. Wang T, Gao L, Hou J, Herou SJA, Griffiths JT, Li W, Dong J, Gao S, Titirici M-M, Kumar RV, Cheetham AK, Bao X, Fu Q, Smoukov SK (2019) Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat Commun 10:1340

    Article  Google Scholar 

  13. Baek J, Rungtaweevoranit B, Pei X, Park M, Fakra SC, Liu Y-S, Matheu R, Alshmimri SA, Alshehri S, Trickett CA, Somorjai GA, Yaghi OM (2018) Bioinspired metal−organic framework catalysts for selective methane oxidation to methanol. J Am Chem Soc 140:18208–18216

    Article  CAS  Google Scholar 

  14. Feng J, Zhang Y, Xiong W, Ding H, He B (2016) Hydrogenolysis of glycerol to 1,2-propanediol and ethylene glycol over Ru-Co/ZrO2 catalysts. Catalysts 6:51

    Article  Google Scholar 

  15. Feng J, Xiong W, Xu B, Jiang W, Wang J, Chen H (2014) Basic oxide-supported Ru catalysts for liquid phase glycerol hydrogenolysis in an additive-free system. Catal Commun 46:98–102

    Article  CAS  Google Scholar 

  16. Tang X, Zeng X, Li Z, Hu L, Sun Y, Liu S, Lei T, Lin L (2014) Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renew Sustain Energy Rev 40:608–620

    Article  CAS  Google Scholar 

  17. Yan K, Yang Y, Chai J, Lu Y (2015) Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals. Appl Catal B 179:292–304

    Article  CAS  Google Scholar 

  18. Dutta S, Yu IKM, Tsang DCW, Ng YH, Ok YS, Sherwood J, Clark JH (2019) Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: a critical review. Chem Eng J 372:992–1006

    Article  CAS  Google Scholar 

  19. Piskun AS, Ftouni J, Tang Z, Weckhuysen BM, Bruijnincx PCA, Heeres HJ (2018) Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts: effect of catalyst synthesis protocols on activity. Appl Catal A 549:197–206

    Article  CAS  Google Scholar 

  20. Filiz BC, Gnanakumar ES, Martínez-Arias A, Gengler R, Rudolf P, Rothenberg G, Shiju NR (2017) Highly selective hydrogenation of levulinic acid to γ-valerolactone over Ru/ZrO2 catalysts. Catal Lett 147:1744–1753

    Article  Google Scholar 

  21. Tan J, Cui J, Ding G, Deng T, Zhu Y, Li Y-W (2016) Efficient aqueous hydrogenation of levulinic acid to γ-valerolactone over a highly active and stable ruthenium catalyst. Catal Sci Technol 6:1469–1475

    Article  CAS  Google Scholar 

  22. Ftouni J, Genuino HC, Munoz-Murillo A, Bruijnincx PCA, Weckhuysen BM (2017) Influence of sulfuric acid on the performance of ruthenium-based catalysts in the liquid-phase hydrogenation of levulinic acid to γ-valerolactone. Chemsuschem 10:2891–2896

    Article  CAS  Google Scholar 

  23. Li S, Wang Y, Yang Y, Chen B, Tai J, Liu H, Han B (2019) Conversion of levulinic acid to γ-valerolactone over ultra-thin TiO2 nanosheets decorated with ultrasmall Ru nanoparticle catalysts under mild conditions. Green Chem 21:770–774

    Article  CAS  Google Scholar 

  24. Abdelrahman OA, Heyden A, Bond JQ (2014) Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C. ACS Catal 4:1171–1181

    Article  CAS  Google Scholar 

  25. Xiao C, Goh T-W, Qi Z, Goes S, Brashler K, Perez C, Huang W (2016) Conversion of levulinic acid to γ-valerolactone over few-layer graphene-supported ruthenium catalysts. ACS Catal 6:593–599

    Article  CAS  Google Scholar 

  26. Wei Z, Lou J, Su C, Guo D, Liu Y, Deng S (2017) An efficient and reusable embedded Ru catalyst for the hydrogenolysis of levulinic acid to γ-valerolactone. Chemsuschem 10:1720–1732

    Article  CAS  Google Scholar 

  27. Yang Y, Sun C-J, Brown DE, Zhang L, Yang F, Zhao H, Wang Y, Ma X, Zhang X, Ren Y (2016) A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts. Green Chem 18:3558–3566

    Article  CAS  Google Scholar 

  28. Wei Z, Li X, Deng J, Wang J, Li H, Wang Y (2018) Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon. Mol Catal 448:100–107

    Article  CAS  Google Scholar 

  29. Yao Y, Wang Z, Zhao S, Wang D, Wu Z, Zhang M (2014) A stable and effective Ru/polyethersulfone catalyst for levulinic acidhydrogenation to γ-valerolactone in aqueous solution. Catal Today 234:245–250

    Article  CAS  Google Scholar 

  30. Cao W, Luo W, Ge H, Su Y, Wang A, Zhang T (2017) UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone. Green Chem 19:2201–2211

    Article  CAS  Google Scholar 

  31. Guo Y, Li Y, Chen J, Chen L (2016) Hydrogenation of levulinic acid into γ-valerolactone over ruthenium catalysts supported on metal–organic frameworks in aqueous medium. Catal Lett 146:2041–2052

    Article  CAS  Google Scholar 

  32. Zhang X, Zhang P, Chen C, Zhang J, Yang G, Zheng L, Zhang J, Han B (2019) Fabrication of 2D metal–organic framework nanosheets with tailorable thickness using bio-based surfactants and their application in catalysis. Green Chem 21:54–58

    Article  CAS  Google Scholar 

  33. Valekar AH, Cho K-H, Chitale SK, Hong D-Y, Cha G-Y, Lee U-H, Hwang DW, Serre C, Chang JS, Hwang YK (2016) Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal–organic frameworks. Green Chem 18:4542–4552

    Article  CAS  Google Scholar 

  34. Lin Z, Cai X, Fu Y, Zhu W, Zhang F (2017) Cascade catalytic hydrogenation–cyclization of methyl levulinate to form γ-valerolactone over Ru nanoparticles supported on a sulfonic acid-functionalized UiO-66 catalyst. RSC Adv 7:44082–44088

    Article  CAS  Google Scholar 

  35. Molleti J, Tiwari MS, Yadav GD (2018) Novel synthesis of Ru/OMS catalyst by solvent-free method: selective hydrogenation of levulinic acid to γ-valerolactone in aqueous medium and kinetic modeling. Chem Eng J 334:2488–2499

    Article  CAS  Google Scholar 

  36. Yan Z-P, Lin L, Liu S (2009) Synthesis of γ-valerolactone by hydrogenation of biomass-derived levulinic acid over Ru/C catalyst. Energy Fuels 23:3853–3858

    Article  CAS  Google Scholar 

  37. Lin S, Zhao Y, Bediako JK, Cho C-W, Sarkar AK, Lim C-R, Yun Y-S (2019) Structure-controlled recovery of palladium(II) from acidic aqueous solution using metal–organic frameworks of MOF-802, UiO-66 and MOF-808. Chem Eng J 362:280–286

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51708075, 51604052), the Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0401), and the Open Fund of Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology (LIFM201708).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Feng or Min Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Zhong, Y., Xie, M. et al. Using MOF-808 as a Promising Support to Immobilize Ru for Selective Hydrogenation of Levulinic Acid to γ-Valerolactone. Catal Lett 151, 86–94 (2021). https://doi.org/10.1007/s10562-020-03277-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03277-x

Keywords

Navigation