Skip to main content

Advertisement

Log in

Probing Photocorrosion Mechanism of CdS Films and Enhancing Photoelectrocatalytic Activity via Cocatalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CdS has unstability due to its severe photocorrosion, which restricts its further application in photoelectrocatalysis. In this paper, after probing detailedly the photocorrosion mechanism that is the oxidation caused by photogenerated holes of CdS, NiOOH cocatalyst is employed to heighten its stability. The stability of CdS/NiOOH is improved 44.50% higher than that of pure CdS after photoelectrochemical (PEC) stability test for 3600 s, because the NiOOH prevents the oxidation of the CdS via capturing the photogenerated holes. Meanwhile, the deposition of NiOOH is beneficial to accelerate the separation of photogenerated carriers, thereby enhancing the PEC activity. The results show that the CdS/NiOOH photoanode achieved a photocurrent density of 3.70 mA cm−2 at 1.23 V vs. RHE, which is approximately 2.03 folds than that of pure CdS. This work provides a simple and feasible method for boosting PEC activity and stability of CdS-based photoelectrode for efficient PEC water splitting.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhou X, Huang J, Zhang H et al (2016) Controlled synthesis of CdS nanoparticles and their surface loading with MoS2 for hydrogen evolution under visible light. Int J Hydrogen Energy 41(33):14758–14767

    CAS  Google Scholar 

  2. Chen D, Liu Z, Guo Z et al (2020) Decorating Cu2O photocathode with noble-metal-free Al and NiS cocatalysts for efficient photoelectrochemical water splitting by light harvesting management and charge separation design. Chem Eng J 381:122655–122663

    CAS  Google Scholar 

  3. Zheng B, Ouyang T, Wang Z et al (2018) Enhanced plasmon-driven photoelectrocatalytic methanol oxidation on Au decorated α-Fe2O3 nanotube arrays. Chem Commun 54:9583–9586

    CAS  Google Scholar 

  4. Gao Z, Chen K, Wang L et al (2020) Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation. Appl Catal B 268:118462–118498

    CAS  Google Scholar 

  5. Ling L, Liu L, Feng Y et al (2018) Synthesis of TiO2 mesocrystal film with enhanced photocatalytic activity. Chin J Catal 39(4):639–645

    CAS  Google Scholar 

  6. She H, Yue P, Huang J et al (2020) One-step hydrothermal deposition of F: FeOOH onto BiVO4 photoanode for enhanced water oxidation. Chem Eng J 392:123703–123734

    CAS  Google Scholar 

  7. Liu Z, Wu J, Zhang J et al (2016) Quantum dots and plasmonic Ag decorated WO3 nanorod photoanodes with enhanced photoelectrochemical performances. Int J Hydrogen Energy 41(45):20529–20535

    CAS  Google Scholar 

  8. Chen S, Li M, Yang S et al (2019) Graphitied carbon-coated bimetallic FeCu nanoparticles as original g-C3N4 cocatalysts for improving photocatalystic activity. Appl Surf Sci 492:571–578

    CAS  Google Scholar 

  9. Xu Y, Ge F, Chen Z et al (2019) One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance. Appl Surf Sci 469:739–746

    CAS  Google Scholar 

  10. Fang G, Liu Z, Han C et al (2020) Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts. Appl Surf Sci 515:146095

    CAS  Google Scholar 

  11. Wei R, Kuang P, Cheng H et al (2017) Plasmon-enhanced photoelectrochemical water splitting on gold NPs decorated ZnO/CdS nanotube arrays. ACS Sustain Chem Eng 5:4249–4257

    CAS  Google Scholar 

  12. Yuan X, Shen D, Zhang Q et al (2019) Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline. Chem Eng J 369:292–301

    CAS  Google Scholar 

  13. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  PubMed  Google Scholar 

  14. Zhang S, Liu Z, Chen D et al (2020) Oxygen vacancies engineering in TiO2 homojunction/ZnFe-LDH for enhanced photoelectrochemical water oxidation. Chem Eng J 395:125101–125147

    CAS  Google Scholar 

  15. She H, Yue P, Ma X et al (2020) Fabrication of BiVO4 photoanodecocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation. Appl Catal B 263:118280–118289

    CAS  Google Scholar 

  16. Amano F, Ishinaga E, Yamakata A et al (2013) Effect of particle size on the photocatalytic activity of WO3 particles for water oxidation. J Phys Chem C 117(44):22584–22590

    CAS  Google Scholar 

  17. Li Y, Liu Z, Li J et al (2020) An effective strategy of constructing multi-junction structure by integrating heterojunction and homojunction to promote charge separation and transfer efficiency of WO3. J Mater Chem A 8:6256–6267

    CAS  Google Scholar 

  18. Zhong DK, Sun J, Inumaru H et al (2009) Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J Am Chem Soc 131(17):6086–6087

    CAS  PubMed  Google Scholar 

  19. Chen D, Liu Z, Guo Z et al (2019) 3D branched Ca-Fe2O3/Fe2O3 decorated with Pt and Co-Pi: improved charge-separation dynamics and photoelectrochemical performance. Chemsuschem 12(14):3286–3295

    CAS  PubMed  Google Scholar 

  20. Chen X, Liu L, Feng Y et al (2017) Fluid eddy induced piezo-promoted photodegradation of organic dye pollutants in wastewater on ZnO nanorod arrays/3D Ni foam. Mater Today 20(9):501–506

    CAS  Google Scholar 

  21. Lan Y, Liu Z, Guo Z et al (2018) A ZnO/ZnFe2O4 uniform core–shell heterojunction with a tubular structure modified by NiOOH for efficient photoelectrochemical water splitting. Dalton Trans 47(35):12181–12187

    CAS  PubMed  Google Scholar 

  22. Ye Y, Gu G, Wang X et al (2019) 3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: a cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity. Int J Hydrogen Energy 44(39):21865–21872

    CAS  Google Scholar 

  23. Zhou S, Yue P, Huang J et al (2019) High-performance photoelectrochemical water splitting of BiVO4@Co-MIm prepared by a facile in-situ deposition method. Chem Eng J 371:885–892

    CAS  Google Scholar 

  24. Zhao L, Wei J, Li Y et al (2019) Photoelectrochemical performance of W-doped BiVO4 photoanode. J Mater Sci 30:21425–21434

    CAS  Google Scholar 

  25. Zhou S, Chen K, Huang J et al (2020) Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Appl Catal B 266:118513–118545

    Google Scholar 

  26. Zheng N, Ouyang T, Chen Y et al (2019) Ultrathin CdS shell-sensitized hollow S-doped CeO2 spheres for efficient visible-light photocatalysis. Catal Sci Technol 9(6):1357–1364

    CAS  Google Scholar 

  27. Li S, Wang L, Li Y et al (2019) (2019) Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Appl Catal B 254:145–155

    CAS  Google Scholar 

  28. Si F, Tang C, Gao Q et al (2020) Bifunctional CdS@Co9S8/Ni3S2 catalyst for efficient electrocatalytic and photo-assisted electrocatalytic overall water splitting. J Mater Chem A 8:3083–3096

    CAS  Google Scholar 

  29. Cheng L, Xiang Q, Liao Y et al (2018) CdS-based photocatalysts. Energy Environ Sci 11(6):1362–1391

    CAS  Google Scholar 

  30. Wang R, Chen S, Ng HY et al (2019) ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chem Eng J 362:658–666

    CAS  Google Scholar 

  31. Fang X, Song J, Pu T et al (2017) Graphitic carbon nitride-stabilized CdS@CoS nanorods: an efficient visible-light-driven photocatalyst for hydrogen evolution with enhanced photo-corrosion resistance. Int J Hydrogen Energy 42(47):28183–28192

    CAS  Google Scholar 

  32. Zhang J, Fang J, Ye X et al (2019) Visible photoactivity and antiphotocorrosion performance of CdS photocatalysts by the hybridization of N-substituted carboxyl group polyaniline. Appl Surf Sci 480:557–564

    CAS  Google Scholar 

  33. Zhen W, Ning X, Yang B et al (2018) The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl Catal B 221:243–257

    CAS  Google Scholar 

  34. Wang D, Bao C, Luo Q et al (2015) Improved visible-light photocatalytic activity and anti-photocorrosion of CdS nanoparticles surface-modified by conjugated derivatives from polyvinyl chloride. J Environ Chem Eng 3(3):1578–1585

    CAS  Google Scholar 

  35. Wang C, Wang L, Jin J et al (2016) Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core–shell nanospheres. Appl Catal B 188:351–359

    CAS  Google Scholar 

  36. Zhong Y, Zhao G, Ma F et al (2016) Utilizing photocorrosion-recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen evolution. Appl Catal B 199:466–472

    CAS  Google Scholar 

  37. Tang Y, Hu X, Liu C et al (2014) Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity. Phys Chem Chem Phys 16:25321–25329

    CAS  PubMed  Google Scholar 

  38. Wang P, Li H, Sheng Y, Chen F (2019) Inhibited photocorrosion and improved photocatalytic H2-evolution activity of CdS photocatalyst by molybdate ions. Appl Surf Sci 463:27–33

    CAS  Google Scholar 

  39. Meng A, Zhang L, Cheng B et al (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31(30):1807660–1807691

    Google Scholar 

  40. Wei R, Huang Z, Gu G et al (2018) Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl Catal B 231:101–107

    CAS  Google Scholar 

  41. Zhang S, Liu Z, Ruan M et al (2020) Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts. Appl Catal B 262:118279–118303

    CAS  Google Scholar 

  42. Zhou M, Guo Z, Liu Z (2020) FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelctrochemical performance. Appl Catal B 260:118213–118237

    CAS  Google Scholar 

  43. Haydous F, Si W, Guzenko VA et al (2018) Improved photoelectrochemical water splitting of CaNbO2N photoanodes by CoPi photodeposition and surface passivation. J Phys Chem C 123(2):1059–1068

    Google Scholar 

  44. Klaus S, Cai Y, Louie MW et al (2015) Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J Phys Chem C 119:7243–7254

    CAS  Google Scholar 

  45. Malara F, Minguzzi A, Marelli M et al (2015) α-Fe2O3/NiOOH: an effective heterostructure for photoelectrochemical water oxidation. ACS Catal 5(9):5292–5300

    CAS  Google Scholar 

  46. Wang L, Wang W, Chen Y et al (2018) Heterogeneous p-n junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution. ACS Appl Mater Interfaces 10(14):11652–11662

    CAS  PubMed  Google Scholar 

  47. Liu Z, Wang X (2018) Efficient photoelectrochemical water splitting of CaBi6O10 decorated with Cu2O and NiOOH for improved photogenerated carriers. Int J Hydrogen Energy 43(29):13276–13283

    CAS  Google Scholar 

  48. Wang T, Chai Y, Ma D et al (2017) Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res 10(8):2699–2711

    CAS  Google Scholar 

  49. Ning X, Li J, Yang B et al (2017) Inhibition of photocorrosion of CdS via assembling with thin film TiO2 and removing formed oxygen by artificial gill for visible light overall water splitting. Appl Catal B 212:129–139

    CAS  Google Scholar 

  50. Ferrer IJ, Salvador P (1987) Photoetching of polycrystalline n-CdS film electrodes in a photoelectrochemical cell: an electrolyte electroreflectance study. Ber Bunsen Ges Phys Chem 91:374–378

    CAS  Google Scholar 

  51. Yuan Y, Chen D, Yu Z et al (2018) Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J Mater Chem A 6(25):11606–11630

    CAS  Google Scholar 

  52. Wu P, Liu Z, Guo Z et al (2019) Zn1−xCdxS nanowall photoanode prepared via seed layer epitaxial growth method and modified by dual co-catalyst for photoelectrochemical water splitting. Appl Surf Sci 467:65–74

    Google Scholar 

  53. Laskowski FA, Nellist MR, Qiu J et al (2018) Metal oxide/(oxy) hydroxide overlayers as hole collectors and oxygen-evolution catalysts on water-splitting photoanodes. J Am Chem Soc 141(4):1394–1405

    PubMed  Google Scholar 

  54. Carroll GM, Gamelin DR (2016) Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe2O3 photoanodes. J Mater Chem A 4(8):2986–2994

    CAS  Google Scholar 

  55. Weaver JMR, Wickramasinghe HK (1991) Semiconductor characterization by scanning force microscope surface photovoltage microscopy. J Vac Sci Technol B 9(3):1562–1565

    CAS  Google Scholar 

  56. Chen D, Liu Z, Zhang S et al (2020) Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method. Appl Catal B 265:118580–118603

    Google Scholar 

  57. Hou L, Li S, Lin Y et al (2016) Photogenerated charges transfer across the interface between NiO and TiO2 nanotube arrays for photocatalytic degradation: a surface photovoltage study. J Colloid Interface Sci 464:96–102

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Science Funds of Tianjin for Distinguished Young Scholar (Grant No. 17JCJQJC44800) and Key Research and Development Plan of Tianjin (Grant No. 19YFSLQY00020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengang Guo.

Ethics declarations

Conflict of interest

The authors declare that they have conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 811 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Guo, Z. & Jia, X. Probing Photocorrosion Mechanism of CdS Films and Enhancing Photoelectrocatalytic Activity via Cocatalyst. Catal Lett 151, 56–66 (2021). https://doi.org/10.1007/s10562-020-03275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03275-z

Keywords

Navigation