Study of the Use of Hydrotalcite–Hydroxyapatite as Heterogeneous Catalysts for Application in Biodiesel Using By-Product as Raw Material


The materials hydrotalcite—HT, hydroxyapatite—HAp and hydrotalcite–hydroxyapatite—HT–HAp were synthesized using the co-precipitation method at constant pH (pH 10), in which first the materials of HT and HAp were synthesized and later a reaction mixture for the formation of HT–HAp material. The materials were characterized by X-ray diffraction (XRD), N2 adsorption and desorption, infrared spectral analysis (FT-IR), thermogravimetric analysis (TG) and morphology. The results indicated that the analysis by XRD confirmed that all materials (HT, HAp, and HT–HAp) presented the typical basal peaks of HT and HAp and that in the HT–HAp material it presented a better crystalline ordering. The analysis of specific surface area (BET) showed that the mixture of materials (HT–HAp) caused a loss of the specific area, indicating a possible interaction between the particles of both materials. The pore diameters showed mesoporosity. In addition, the materials HT, HAp and HT–HAp had their catalytic activity determined through transesterification reactions using different lipid raw materials (commercial soy oil and vegetable oil deodorization distillate-VODD) obtaining ethyl esters (biodiesel) as a product. The results for the raw material commercial soybean oil showed that the catalysts HT and HAp obtained incomplete reactions, that is, they presented low conversions in ethyl esters (about 39–65% in 6 h of reaction). On the other hand, the study of the influence of temperature on the calcination of the HT–HAp catalyst obtained high conversions in ethyl esters, about 98% for the catalyst calcined at 700 °C, under conditions of 45:1 ethanol/oil molar ratio, temperature of 70 °C, catalyst concentration of 5% and 6 h of reaction. With the transesterification of soybean oil as a comparative form, the catalyst in its best conditions was used to transesterify the VODD by-product. Which results of conversion into considerable ethyl esters were found (about 88%, in just 6 h of reaction), thus confirming that the chemical catalyst was able to form the main esters of fatty acids even using different lipid sources.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Jaiyen S, Naree T, Ngamcharussrivichai C (2015) Renew Energy 74:433–440

    Article  CAS  Google Scholar 

  2. 2.

    Villardi HGA, Leal MF, Andrade PHA, Pessoa FLP, Salgado AM, De Oliveira AG (2017) Chem Eng Trans 57:1999–2004

    Google Scholar 

  3. 3.

    Suarez PAZ, Meneghetti SMP (2007) Quim Nova 30:2068–2071

    Article  CAS  Google Scholar 

  4. 4.

    Ramos LP, Kothe V, César-Oliveira MAF, Muniz-Wypych AS, Nakagaki S, Krieger N, Wypych F, Cordeiro CS (2017) Rev Virtual Quiz 9:317–369

    Article  Google Scholar 

  5. 5.

    Abdalla AL, Silva JCF, Godol AR (2008) R Bras Zootec 37:258–260

    Article  Google Scholar 

  6. 6.

    Verma P, Sharma MP (2016) Renew Sust Energ Rev 62:1063–1071

    Article  CAS  Google Scholar 

  7. 7.

    Yin X, Duan X, You Q, Dai C, Tan Z, Zhu X (2016) Energ Convers Manage 112:199–207

    Article  CAS  Google Scholar 

  8. 8.

    Teixeira ARS, Santos JLC, Crespo JG (2011) Ind Eng Chem Res 50:2865–2875

    Article  CAS  Google Scholar 

  9. 9.

    Piloto-Rodríguez R, Melo EA, Goyos-Pérez L, Verhelst S (2014) Braz J Chem Eng 31:287–301

    Article  Google Scholar 

  10. 10.

    Aarthy M, Saravanan P, Gowthaman MK, Rose C, Kamini NR (2014) Chem Eng Res Des 92:1591–1601

    Article  CAS  Google Scholar 

  11. 11.

    Lee AF, Wilson K (2015) Catal Today 242:3–18

    Article  CAS  Google Scholar 

  12. 12.

    Chen G, Shan R, Shi J, Liu C, Yan B (2015) Energ Convers Manage 98:463–469

    Article  CAS  Google Scholar 

  13. 13.

    Kiss FE, Jovanovic M, Boskovic GC (2010) Fuel Process Technol 91:1316–1320

    Article  CAS  Google Scholar 

  14. 14.

    Nowicki J, Lach J, Organek M, Sabura E (2016) Appl Catal A 524:17–24

    Article  CAS  Google Scholar 

  15. 15.

    Essamlali Y, Amadine O, Larzek M, Len C, Zahouily M (2017) Energy Convers Manage 149:355–367

    Article  CAS  Google Scholar 

  16. 16.

    Lugovskoy S, Weiss D, Tsadok U, Lugovskoy A (2016) Surf Coat Technol 301:80–84

    Article  CAS  Google Scholar 

  17. 17.

    Al-Khaledy A (2015) J Eng Sci 8:21–37

    Google Scholar 

  18. 18.

    Rodrigues E, Brasil H, Barros T, Pereira C, Dos Reis MAL, Almeida O (2018) Cerâmica 64:166–175

    Article  CAS  Google Scholar 

  19. 19.

    Coral N, Brasil H, Rodrigues E, Da Costa CE, Rumjanek V (2019) Sustain Chem Pharm 11:49–53

    Article  Google Scholar 

  20. 20.

    Navajas A, Campo I, Moral A, Echave J, Sanz O, Montes M, Odriozola JA, Arzamendi G, Gandía LM (2018) Fuel 211:173–181

    Article  CAS  Google Scholar 

  21. 21.

    Brasil H, Pereira P, Corrêa J, Nascimento L, Rumjanek V, Almeida V, Rodrigues E (2017) Catal Lett 147:391–399

    Article  CAS  Google Scholar 

  22. 22.

    Reichle WT (1985) J Catal 94:547–557

    Article  CAS  Google Scholar 

  23. 23.

    Elliot JC (1994) Elsevier Science, London

  24. 24.

    Yin X, You Q, Ma H, Dai C, Zhang H, Li K, Li Y (2015) Ultrason Sonochem 23:53–58

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Rivera JA, Fetter G, Baños L, Guzmán J, Bosch P (2009) J Porous Mater 16:401–408

    Article  CAS  Google Scholar 

  26. 26.

    Ordonez S, Diaz E, Leon M, Faba L (2011) Catal Today 10:71–76

    Article  CAS  Google Scholar 

  27. 27.

    Gregg SJ, Sing KSW (1982) London

  28. 28.

    Conceição LD, Pergher SB, Moro CC, Oliveira LC (2007) Quim Nova 30:1077–1081

    Article  Google Scholar 

  29. 29.

    Terra J, Dourado ER, Eon JG, Ellis DE, Gonzalez G, Rossi AM (2009) Phys Chem Chem Phys 11:568–577

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Xie W, Peng H, Chen L (2006) J Mol Catal A 246:24–32

    Article  CAS  Google Scholar 

  31. 31.

    Liu C, Huang Y, Shen W, Cui J (2001) Biomaterials 22:301–306

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Göller G, Oktar FN (2002) Ceram Int 28:617–621

    Article  Google Scholar 

  33. 33.

    Silva AL, Farias AFF, Costa ACFM (2019) Cerâmica 65:13–27

    Article  CAS  Google Scholar 

  34. 34.

    Carvalho AK, Da Rós PC, Teixeira LF, Andrade GS, Zanin GM, De Castro HF (2013) Ind Crop Prod 50:485–493

    Article  CAS  Google Scholar 

  35. 35.

    Liu J, Huang J, Fan KW, Jiang Y, Zhong Y, Sun Z, Chen F (2010) Bioresour Technol 101:8658–8663

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Haigh KF, Abidin SZ, Vladisavljevic GT, Saha B (2013) Fuel 111:186–193

    Article  CAS  Google Scholar 

  37. 37.

    Babaki M, Yousefi M, Habibi Z, Mohammadi M (2017) Renew Energy 105:465–472

    Article  CAS  Google Scholar 

  38. 38.

    Knothe G (2005) Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

Download references


This work was supported by the Research Support Foundation of the State of Rio de Janeiro (FAPERJ) and CAPES (Renata N. Vilas Bôas postdoctoral fellowship).

Author information



Corresponding author

Correspondence to Renata N. Vilas-Bôas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in publishing the manuscript in the Journal Catalysis Letters.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vilas-Bôas, R.N., da Silva, L.L.C., Fernandes, L.D. et al. Study of the Use of Hydrotalcite–Hydroxyapatite as Heterogeneous Catalysts for Application in Biodiesel Using By-Product as Raw Material. Catal Lett (2020).

Download citation


  • Heterogeneous catalysis
  • Hydrotalcite
  • Hydroxyapatite
  • Biodiesel
  • Transesterification