Skip to main content
Log in

Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Au, Pd and Rh nanoparticles were supported on Mn/Na2Ti3O7 alkaline titanate nanotubes by the deposition–precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 °C with apparent activation energy of 27 kJ mol−1. The following tendency was observed for catalytic activity Pt > Au > Rh. The characterizations revealed the importance of the noble metals in the formation of vacancies and OH groups and their ability to activate the alkaline titanate surface oxygen species, which had an impact on the formation of acid sites (Brönsted and Lewis); another key factor for formaldehyde oxidation was metal dispersion. The presence of OH species facilitated the transformation of formaldehyde adsorbed on the M-Mn/alkaline titanate nanotubes, probably through the reaction with adsorbed O species, which promoted the decomposition of formaldehyde to CO2 at room temperature.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hult EL, Willem H, Price PN, Hotchi T, Singer ML, Russell BC (2015) Formaldehyde and acetaldehyde exposure mitigation in US residences: in-home measurements of ventilation control and source control. Indoor Air 25:523–535

    PubMed  CAS  Google Scholar 

  2. Goodman NB, Steinemann A, Wheeler AJ, Paevere PJ, Cheng M, Brown SK (2017) Volatile organic compounds within indoor environments in Australia. Build Environ 122:116–125

    Google Scholar 

  3. Jiang CJ, Li DD, Zhang PY, Li JG, Wang J, Yu JG (2017) Formaldehyde, and volatile organic compound (VOC) emissions from particleboard: identification of odorous compounds and effects of heat treatment. Build Environ 117:118–126

    Google Scholar 

  4. Deng JL, Song WY, Chen LL, Wang L, Jing MZ, Ren Y, Zhao Z, Liu J (2019) The effect of oxygen vacancies and water on HCHO catalytic oxidation over Co3O4 catalyst: a combination of density functional theory and microkinetic study. Chem Eng J 355:540–550

    CAS  Google Scholar 

  5. Wu GF, Zhao CH, Zhou X, Chen JH, Li YQ, Chen Y (2018) The interaction between HCHO and TiO2 (101) surface without and with water and oxygen molecules. Appl Surf Sci 455:410–417

    CAS  Google Scholar 

  6. Suib SL (1998) Microporous manganese oxides. Curr Opin Solid Mater Sci 3:63–70

    CAS  Google Scholar 

  7. Pappas DK, Boningari T, Boolchand P, Smirniotis PG (2016) Novel manganese oxide confined interweaved titania nanotubes for the low-temperature Selective Catalytic Reduction (SCR) of NOx by NH3. J Catal 334:1–13

    CAS  Google Scholar 

  8. Camposeco R, Castillo S, González VR, García-Serrano LA, Mejía-Centeno I (2018) Selective catalytic reduction of NOx by NH3 at low temperature over manganese oxide catalysts supported on titanate nanotubes. Chem Eng Commun 205–11:1583–1593

    Google Scholar 

  9. Li GN, Li L (2015) Highly efficient formaldehyde elimination over meso-structured M/CeO2 (M = Pd, Pt, Au and Ag) catalyst under ambient conditions. RSC Adv 5:36428–36433

    CAS  Google Scholar 

  10. Zhang CB, He H, Tanaka K (2006) Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl Catal B Environ 65:37–43

    CAS  Google Scholar 

  11. Liu F, Rong SP, Zhang PY, Gao LL (2018) One-step synthesis of nanocarbon-decorated MnO2 with superior activity for indoor formaldehyde removal at room temperature. Appl Catal B 235:158–167

    CAS  Google Scholar 

  12. Yang XZ, Shen YN, Bao LL, Zhu HY, Yuan ZF (2008) Oxidation of lean formaldehyde in air over an Au/CeO2 catalyst and its kinetics. React Kinet Catal Lett 93:19–25

    CAS  Google Scholar 

  13. Huang HB, Leung DY (2011) Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature. J Catal 280:60–67

    CAS  Google Scholar 

  14. Zhang CB, Liu FD, Zhai YP, Ariga H, Yi N, Liu YC, Asakura K, Flytzani-Stephanopoulos M, He H (2012) Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angew Chem Int Ed 51:9628–9632

    CAS  Google Scholar 

  15. Zhu XF, Yu JG, Jiang CJ, Cheng B (2017) Enhanced room-temperature HCHO decomposition activity of highly-dispersed Pt/Al2O3 hierarchical microspheres with exposed 1 1 0 facets. J Ind Eng Chem 45:197–205

    CAS  Google Scholar 

  16. Cui WY, Xue D, Yuan XL, Zheng B, Jia MJ, Zhang WX (2017) Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions. Appl Surf Sci 411:105–112

    CAS  Google Scholar 

  17. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14:3370–3377

    CAS  Google Scholar 

  18. Zhang C, He H (2007) A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catal Today 126:345–350

    CAS  Google Scholar 

  19. Zhang CB, He H, Tanaka K (2005) Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature. Catal Commun 6:211–214

    CAS  Google Scholar 

  20. Huang HB, Leung DYC, Ye DQ (2011) Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation. J Mater Chem 21:9647–9652

    CAS  Google Scholar 

  21. Sun X, Lin J, Guanc H, Lia L, Suna L, Wang Y, Miao S, Sua Y, Wang X (2018) Complete oxidation of formaldehyde over TiO2 supported subnanometer Rh catalyst at ambient temperature. Appl Catal B 226:575–584

    CAS  Google Scholar 

  22. Kapteijn F, Dick van Langeveld J, Mouljin JA, Andreini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE (1994) Alumina-supported manganese oxide catalysts: I. Characterization: effect of precursor and loading. J Catal 150:94–104

    CAS  Google Scholar 

  23. de la Peña O’Shea VA, Álvarez-Galván MC, Fierro JLG, Arias PL (2005) Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol. Appl Catal B 57:191–199

    Google Scholar 

  24. Chen Q, Du G, Zhang S, Peng LM (2002) The structure of trititanate nanotubes. Acta Crystallogr B 58:587–593

    PubMed  CAS  Google Scholar 

  25. Nepakab D, Srinivas D (2015) Effect of alkali and alkaline earth metal ions on benzyl alcohol oxidation activity of titanate nanotube-supported Au catalysts. RSC Adv 5:47740–47748

    Google Scholar 

  26. Weiher N, Bus E, Delannoy L, Louis C, Ramaker DE, Miller JT, Van Bokhoven JA (2006) Structure and oxidation state of gold on different supports under various CO oxidation conditions. J Catal 240:100–107

    CAS  Google Scholar 

  27. Xu QL, Lei WY, Li XY, Qi XY, Yu JG, Liu G, Wang J, Zhang PY (2014) Efficient removal of formaldehyde by nanosized gold on well-defined CeO2 nanorods at room temperature. Environ Sci Technol 48:9702–9708

    PubMed  CAS  Google Scholar 

  28. Camposeco R, Castillo S, Mejia-Centeno I, Navarrete J, Gómez R (2014) Effect of the Ti/Na molar ratio on the acidity and the structure of TiO2 nanostructures: Nanotubes, nanofibers and nanowires. Mater Charact 90:113–120

    CAS  Google Scholar 

  29. Kitano M, Wada E, Nakajima K, Hayashi S, Miyazaki S, Kobayashi H, Hara M (2013) Protonated titanate nanotubes with Lewis and Brønsted acidity: relationship between nanotube structure and catalytic activity. Chem Mater 25:385–393

    CAS  Google Scholar 

  30. Busca G (2007) Acid catalysts in industrial hydrocarbon, chemistry. Chem Rev 107:5366–5410

    PubMed  CAS  Google Scholar 

  31. Ertl G, Knözinger H, Weitkamp J (1997) Handbook of heterogenous catalysis. VCH Verlagsgesellschaf mbH, Weinheim

    Google Scholar 

  32. Araña J, Peña Alonso A, Doña Rodríguez JM, Colón G, Navío JA, Pérez Peña J (2009) FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts. Appl Catal B 89:204–213

    Google Scholar 

  33. Yuan ZY, Su BL (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf A 241:173–183

    CAS  Google Scholar 

  34. Xu Z, Yu J, Jaroniec M (2015) Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. Appl Catal B 163:306–312

    CAS  Google Scholar 

  35. Lin H, Chen D, Liu H, Zou X, Chen T (2017) Effect of MnO2 crystalline structure on the catalytic oxidation of formaldehyde, aerosol and air. Qual Res 17:1011–1020

    CAS  Google Scholar 

  36. Dong N, Ye Q, Chen M, Cheng S, Kang T, Dai H (2020) Catalytic oxidation of HCHO over the sodium-treated sepiolite-supported rare Earth (La, Eu, Dy, and Tm) oxide catalysts. Catalysts 10(3):328

    CAS  Google Scholar 

  37. Costello CK, Yang JH, Lay HY, Wang Y, Lin JN, Marks LD, Kung MC, Kung HH (2003) On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3. Appl Catal A 2438:15–24

    Google Scholar 

  38. Santara B, Giri PK, Imakita K, Fujii M (2013) Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale 5:5476–5488

    PubMed  CAS  Google Scholar 

  39. Viskovskiy A, Matsumoto H, Mitsuhara K, Nakada T, Akita T, Kido Y (2011) Electronic d-band properties of gold nanoclusters grown on amorphous carbon. Phys Rev B 83:165428

    Google Scholar 

  40. Zhang G, Lan ZA, Lin L, Lin S, Wang X (2016) Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem Sci 7:3062–3066

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Kim SS, Park KH, Hong SC (2011) A study on HCHO oxidation characteristics at room temperature using a Pt/TiO2 catalyst. Appl Catal A 398:96–103

    CAS  Google Scholar 

  42. Leung DY, Fu XL, Ye DQ (2012) Huang HB, Effect of oxygen mobility in the lattice of Au/TiO2 on formaldehyde oxidation. Kinet Catal 53:239–246

    CAS  Google Scholar 

  43. Li YB, Zhang CB, Ma JZ, Chen M, Deng H, He H (2017) High temperature reduction dramatically promotes Pd/TiO2 catalyst for ambient formaldehyde oxidation. Appl Catal B 217:560–569

    CAS  Google Scholar 

  44. Yu XH, He JH, Wang DH, Hu YC, Tian H, Dong TX, He ZC (2012) Au-Pt bimetallic nanoparticles supported on nest-like MnO2: synthesis and application in HCHO decomposition. J Nanoparticle Res 1260:14

    Google Scholar 

  45. Chen HY, Tang MN, Rui ZB, Ji HB (2015) MnO2 promoted TiO2 nanotube array supported Pt catalyst for formaldehyde oxidation with enhanced efficiency. Ind Eng Chem Res 54:8900–8907

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support provided by the Consejo Nacional de Ciencia y Tecnología (CONACYT), through the PDNPN1216 and CB-18269 grants; Dirección General de Asuntos del Personal Académico-UNAM, through the PAPIIT IN103719 grant; and the Mexican Petroleum Institute via the Molecular Engineering Program (Project D.00477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zanella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camposeco, R., Castillo, S., Nava, N. et al. Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature. Catal Lett 150, 3342–3358 (2020). https://doi.org/10.1007/s10562-020-03254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03254-4

Keywords

Navigation