Skip to main content
Log in

MOF-Derived Cu-Nanoparticle Embedded in Porous Carbon for the Efficient Hydrogenation of Nitroaromatic Compounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Novel Cu-nanoparticles (NPs) embedded in porous carbon materials (Cu@C-x) were prepared by one-pot pyrolysis of metal–organic frameworks (MOF) HKUST-1 at different temperatures. The obtained material Cu@C-x was used as a cost-effective catalyst for the hydrogenation of nitrobenzene using NaBH4 as the reducing agent under mild reaction conditions. By considering the catalyst preparation and the catalytic activity, a pyrolysis temperature of 400 °C was finally chosen to synthesize the optimal catalyst. When the aromatic nitro compounds with reducible groups, such as cyano, halogen, and alkyl groups, were tested in this catalytic hydrogenation, an excellent selectivity approaching 100% was achieved. In the recycling experiment, a significant decrease in nitrobenzene conversion was observed in the third cycle, mainly due to the very small amount of catalyst employed in the reaction. Hence, the easily prepared and cost-effective Cu@C-400 catalyst fabricated in this study demonstrates potential for the applications in selective reduction of aromatic nitro compounds.

Graphic Abstract

The catalyst Cu@C-400 exhibited 100 % conversion and high selectivity for the hydrogenation of industrially relevant nitroarenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tafesh AM, Weiguny J (1996) Chem Rev 96:2035

    Article  CAS  Google Scholar 

  2. Adams JP, Paterson JR (2000) J Chem Soc Perkin Trans 1(22):3695

    Article  Google Scholar 

  3. Figueras F, Coq B (2001) J Mol Catal A 173:223

    Article  CAS  Google Scholar 

  4. Downing RS, Kunkeler PJ, van Bekkum H (1997) Catal Today 37:121

    Article  CAS  Google Scholar 

  5. Hashmi AS, Hutchings GJ (2006) Angew Chem Int Ed 45:7896

    Article  Google Scholar 

  6. Wienhofer G, Sorribes I, Boddien A, Westerhaus F, Junge K, Junge H, Llusar R, Beller M (2011) J Am Chem Soc 133:12875

    Article  Google Scholar 

  7. Jagadeesh RV, Wienhofer G, Westerhaus FA, Surkus AE, Pohl MM, Junge H, Junge K, Beller M (2011) Chem Commun 47:10972

    Article  CAS  Google Scholar 

  8. Shalom M, Molinari V, Esposito D, Clavel G, Ressnig D, Giordano C, Antonietti M (2014) Adv Mater 26:1272

    Article  CAS  Google Scholar 

  9. Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S (2011) Angew Chem Int Ed 50:6799

    Article  CAS  Google Scholar 

  10. Zhao Z, Yang H, Li Y, Guo X (2014) Green Chem 16:1274

    Article  CAS  Google Scholar 

  11. Lara P, Philippot K (2014) Catal Sci Technol 4:2445

    Article  CAS  Google Scholar 

  12. Zhang S, Chang C-R, Huang Z-Q, Li J, Wu Z, Ma Y, Zhang Z, Wang Y, Qu Y (2016) J Am Chem Soc 138:2629

    Article  CAS  Google Scholar 

  13. Lee J, Jackson DK, Li T, Winans RE, Dumesic JA, Kuech TF, Huber GW (2014) Energy Environ Sci 7:1657

    Article  CAS  Google Scholar 

  14. O'Neill BJ, Jackson DK, Crisci AJ, Farberow CA, Shi F, Alba-Rubio AC, Lu J, Dietrich PJ, Gu X, Marshall CL, Stair PC, Elam JW, Miller JT, Ribeiro FH, Voyles PM, Greeley J, Mavrikakis M, Scott SL, Kuech TF, Dumesic JA (2013) Angew Chem Int Ed 52:13808

    Article  CAS  Google Scholar 

  15. Long J, Zhou Y, Li Y (2015) Chem Commun 51:2331

    Article  CAS  Google Scholar 

  16. Huang G, Yang L, Ma X, Jiang J, Yu S-H, Jiang H-L (2016) Chem Eur J 22:3470

    Article  CAS  Google Scholar 

  17. Formenti D, Ferretti F, Scharnagl FK, Beller M (2019) Chem Rev 119:2611

    Article  CAS  Google Scholar 

  18. Karahan Ö, Biçer E, Taşdemir A, Yürüm A, Gürsel SA (2018) Eur J Inorg Chem 9:1073

    Article  Google Scholar 

  19. Sun X, Olivos-Suarez AI, Osadchii D, Romero MJ, Kapteijn F, Gascon J (2018) J Catal 357:20

    Article  Google Scholar 

  20. Wang X, Li Y (2016) J Mol Catal A 420:56

    Article  CAS  Google Scholar 

  21. Li Y, Zhou Y-X, Ma X, Jiang H-L (2016) Chem Commun 52:4199

    Article  CAS  Google Scholar 

  22. Tang B, Song W-C, Yang E-C, Zhao X-J (2017) RSC Adv 7:1531

    Article  CAS  Google Scholar 

  23. Zeynizadeh B, Zabihzadeh M, Shokri Z (2016) J Iran Chem Soc 13:1487

    Article  CAS  Google Scholar 

  24. Tian F, Fu Z, Zhang H, Zhang J, Chen Y, Jia C (2015) Fuel 158:200

    Article  CAS  Google Scholar 

  25. Tan H, Ma C, Gao L, Li Q, Song Y, Xu F, Wang T, Wang L (2014) Chem Eur J 20:16377

    Article  CAS  Google Scholar 

  26. Sasmal AK, Dutta S, Pal T (2016) Dalton Trans 45:3139

    Article  CAS  Google Scholar 

  27. Niu H, Liu S, Cai Y, Wu F, Zhao X (2016) Microporous Mesoporous Mater 219:48

    Article  CAS  Google Scholar 

  28. Kadam HK, Tilve SG (2012) RSC Adv 2:6057

    Article  CAS  Google Scholar 

  29. Yang S, Zhang Z-H, Chen Q, He M-Y, Wang L (2017) Appl Organometal Chem 32:e4132

    Article  Google Scholar 

  30. Tumma M, Srivastava R (2013) Catal Commun 37:64

    Article  CAS  Google Scholar 

  31. Rajabzadeh M, Eshghi H, Khalifeh R, Bakavoli M (2016) RSC Adv 6:19331

    Article  CAS  Google Scholar 

  32. Parmekar MV, Salker AV (2016) RSC Adv 6:108458

    Article  CAS  Google Scholar 

  33. Rahman A, Jonnalagadda SB (2008) Catal Lett 123:264

    Article  CAS  Google Scholar 

  34. Jiang L, Zhou P, Zhang Z, Jin S, Chi Q (2017) Ind Eng Chem Res 56:12556

    Article  CAS  Google Scholar 

  35. Jagadeesh RV, Banerjee D, Arockiam PB, Junge H, Junge K, Pohl M-M, Radnik J, Brückner A, Beller M (2015) Green Chem 17:898

    Article  CAS  Google Scholar 

  36. Patra AK, Dukjoon Kim NV (2017) Appl Catal A 538:148

    Article  CAS  Google Scholar 

  37. Layek K, Kantam ML, Shirai M, Nishio-Hamane D, Sasaki T, Maheswaran H (2012) Green Chem 14:3164–3174

    Article  CAS  Google Scholar 

  38. Haber F, Elektrochem Z (1898) Angew Phys Chem 22:506

    Google Scholar 

Download references

Acknowledgements

We are grateful to the financial supports from Natural Science Foundation of China -Liaoning United Funds (Grant No. U1508205), Fundamental Research Funds for the Central Universities (Grant No. DUT15ZD113), and the Key Laboratory of Applied Surface and Colloid Chemistry (Shanxi Normal University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuping Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, C., Jia, W., Zhong, Q. et al. MOF-Derived Cu-Nanoparticle Embedded in Porous Carbon for the Efficient Hydrogenation of Nitroaromatic Compounds. Catal Lett 150, 3394–3401 (2020). https://doi.org/10.1007/s10562-020-03244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03244-6

Keywords

Navigation