Skip to main content
Log in

Ni0.85Co0.15WO4 for Photocatalytic Reduction of CO2 Under Mild Conditions with High Activity and Selectivity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Efficient catalysts play an important role in photoreduction of greenhouse gases (CO2 etc.) to value-added chemicals such as CO. In this work, we synthesized a series of Ni1−xCoxWO4 (x = 0–1) catalysts by chemical co-deposition method. Among the prepared materials, Ni0.85Co0.15WO4 exhibits superior catalytic performance for photocatalytic reduction of CO2 to CO with [Ru(bpy)3]Cl2·6H2O as the photosensitizer. The productivity and selectivity of CO are 14.33 mmol g−1 h−1 and 86.4%, respectively under visible light irradiation. The experimental results demonstrate that superiority of electron conductivity of metal tungstates and the high activity of Co active sites facilitate the separation and transfer of photo-induced charges and lead to the excellent performance of photcatalytic reduction of CO2 to CO.

Graphic Abstract

Ni0.85Co0.15WO4, combining the superiority of electron conductivity of metal tungstates with the high activity of Co active sites, exhibits high productivity and selectivity of CO in photo-reduction of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao G, Huang X, Wang X, Wang X (2017) J Mater Chem A 5:21625–21649

    CAS  Google Scholar 

  2. Wang L, Chen W, Zhang D, Du Y, Amal R, Qiao S, Wu J, Yin Z (2019) Chem Soc Rev 48:5310–5349

    CAS  PubMed  Google Scholar 

  3. Liu C, Wang W, Liu B, Qiao J, Lv L, Gao X, Zhang X, Xu D, Liu W, Liu J, Jiang Y, Wang Z, Wu L, Wang F (2019) Catalysts 9:658

    CAS  Google Scholar 

  4. Burkart MD, Hazari N, Tway CL, Zeitler EL (2019) ACS Catal 9:7937–7956

    CAS  Google Scholar 

  5. Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703–3727

    CAS  PubMed  Google Scholar 

  6. Li X, Yu J, Jaroniec M, Chen X (2019) Chem Rev 119:3962–4179

    CAS  PubMed  Google Scholar 

  7. Bai S, Wang X, Hu C, Xie M, Jiang J, Xiong Y (2014) Chem Commun 50:6094–6097

    CAS  Google Scholar 

  8. Li K, Peng T, Ying Z, Song S, Zhang J (2016) Appl Catal B 180:130–138

    Google Scholar 

  9. Mohapatra L, Parida K (2016) J Mater Chem A 4:10744–10766

    CAS  Google Scholar 

  10. Jiao X, Chen Z, Li X, Sun Y, Gao S, Yan W, Wang C, Zhang Q, Lin Y, Luo Y, Xie Y (2017) J Am Chem Soc 139:7586–7594

    CAS  PubMed  Google Scholar 

  11. Wang S, Yao W, Lin J, Ding Z, Wang X (2014) Angew Chem 53:1034–1038

    CAS  Google Scholar 

  12. Sakimoto KK, Zhang SJ, Yang P (2016) Nano Lett 16:5883–5887

    CAS  PubMed  Google Scholar 

  13. Lin X, Gao Y, Jiang M, Zhang Y, Hou Y, Dai W, Wang S, Ding Z (2018) Appl Catal B 224:1009–1016

    CAS  Google Scholar 

  14. Qin J, Wang S, Wang X (2017) Appl Catal B 209:476–482

    CAS  Google Scholar 

  15. Wang M, Liu J, Guo C, Gao X, Gong C, Wang Y, Liu B, Li X, Gurzadyana GG, Sun L (2018) J Mater Chem A 6:4768–4775

    CAS  Google Scholar 

  16. Yao Y, Gao Y, Ye L, Chen H, Sun L (2018) J Energy Chem 27:502–506

    Google Scholar 

  17. Schneider J, Jia H, Muckermana JT, Fujita E (2012) Chem Soc Rev 41:2036–2051

    CAS  PubMed  Google Scholar 

  18. Chen W, Han B, Tian C, Liu X, Liang S, Deng H, Lin Z (2019) Appl Catal B 244:996–1033

    CAS  Google Scholar 

  19. Wang S, Guan B, Lou X (2018) Energy Environ Sci 11:306–310

    CAS  Google Scholar 

  20. Wang S, Ding Z, Wang X (2015) Chem Commun 51:1517–1519

    CAS  Google Scholar 

  21. Ran J, Jaroniec M, Qiao S (2018) Adv Mater 30:1704649

    Google Scholar 

  22. Bi Y, Nie H, Li D, Zeng S, Yang Q, Li M (2010) Chem Commun 46:7430–7432

    CAS  Google Scholar 

  23. Sun B, Zhao W, Wei L, Li H, Chen P (2014) Chem Commun 50:13142–13145

    CAS  Google Scholar 

  24. Rajagopal S, Nataraj D, Khyzhun OY, Djaoued Y, Robichaud J, Mangalaraj D (2010) J Alloys Compd 493:340–345

    CAS  Google Scholar 

  25. He Q, Ye Y, Yang Y (2017) J Phase Equilib Diffus 38:416–425

    CAS  Google Scholar 

  26. Mizutani U (2012) MRS Butllrtin 37:169

    Google Scholar 

  27. Huang Y, Yan C, Shi X, Zhi W, Li Z, Yan Y, Zhang M, Cao G (2018) Nano Energy 48:430–440

    CAS  Google Scholar 

  28. Chen S, Yang G, Jia Y, Zheng H (2017) J Mater Chem A 5:1028–1034

    CAS  Google Scholar 

  29. Xu X, Pei L, Yang Y, Shen J, Ye M (2016) J Alloys Compd 654:23–31

    CAS  Google Scholar 

  30. Nagaraju G, Kakarla R, Cha S, Yu J (2015) Nano Res 8:3749–3763

    CAS  Google Scholar 

  31. Xu X, Gao J, Huang G, Qiu H, Wang Z, Wu J, Pan Z, Xing F (2015) Electrochim Acta 174:837–845

    CAS  Google Scholar 

  32. Zhu J, Li W, Li J, Li Y, Hu H, Yang Y (2013) Electrochim Acta 112:191–198

    CAS  Google Scholar 

  33. He G, Jianmin Li J, Li W, Li B, Noor N, Xu K, Hu J, Parkin IP (2015) J Mater Chem A 27:14272–14278

    Google Scholar 

  34. Ji Y, Yang L, Ren X, Cui G, Xiong X, Sun X (2018) ACS Sustain Chem Eng 6:9555–9559

    CAS  Google Scholar 

  35. Srirapua VKVP, Kumar A, Srivastava P, Singh RN, Sinha ASK (2016) Electrochim Acta 209:75–84

    Google Scholar 

  36. Do T, Van CN, Tsai KA, Quynh LT, Chen J, Lin Y, Chen Y, Chou W, Wu C, Hsu YJ, Chu Y (2016) Nano Energy 23:153–160

    CAS  Google Scholar 

  37. Chen S, Yang G, Jia Y, Zheng H (2016) ChemElectroChem 3:1490–1496

    CAS  Google Scholar 

  38. Banerjee T, Haase F, Savasci G, Gottschling K, Ochsenfeld C, Lotsch B (2017) J Am Chem Soc 139:16228–16234

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fischer S, Rosel A, Kammer A, Barsch E, Schoch R, Junge H, Bauer M, Beller M, Ludwig R (2018) Chem Eur J 24:16052–16065

    CAS  PubMed  Google Scholar 

  40. Liu W, Li X, Wang C, Pang H, Liu W, Wang K, Zeng Q, Jiang J (2019) J Am Chem Soc 141:17431–17440

    CAS  PubMed  Google Scholar 

  41. Lu M, Li Q, Liu J, Zhang F, Zhang L, Wang J, Kang Z, Lan Y (2019) Appl Catal B 254:624–633

    CAS  Google Scholar 

  42. Liu M, Mu Y, Yao S, Guo S, Guo X, Zhang Z, Lu T (2019) Appl Catal B 245:496–501

    CAS  Google Scholar 

  43. Zawawi SMM, Yahya R, Hassan A, Mahmud HNME, Daud MN (2013) Chem Cent J 7:80

    Google Scholar 

  44. Karthiga R, Kavitha B, Rajarajan M, Suganthi A (2015) Mater Sci Semicond Process 40:123–129

    CAS  Google Scholar 

  45. Zhu Y, Cao C, Tao S, Chu W, Wu Z, Li Y (2014) Sci Rep 4:5787

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cao S, Shen B, Tong T, Fu J, Yu J (2018) Adv Funct Mater 28:1800136

    Google Scholar 

  47. Wang S, Gaun B, Lu Y, Lou X (2017) J Am Chem Soc 139:17305–17308

    CAS  PubMed  Google Scholar 

  48. Ye L, Gao Y, Cao S, Chen H, Yao Y, Hou J, Sun L (2018) Appl Catal B 227:54–60

    CAS  Google Scholar 

  49. Ouyang T, Huang H, Wang J, Zhong D, Lu T (2017) Angew Chem 56:738–743

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National the Natural Science Foundation of China (NSFC 21673032), the Fundamental Research Funds for the Central Universities of China (DUT18RC(3)055), and the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (201812), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxuan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Guo, B., Gao, X. et al. Ni0.85Co0.15WO4 for Photocatalytic Reduction of CO2 Under Mild Conditions with High Activity and Selectivity. Catal Lett 150, 3071–3078 (2020). https://doi.org/10.1007/s10562-020-03234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03234-8

Keywords

Navigation