Skip to main content
Log in

Degradation of Sesame Oil Phenolics Using Magnetic Immobilized Laccase

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Phenolic compounds exhibit toxic effects and there are still many challenges to find an efficient way for degradation and removal of phenol especially from food. In the present study, magnetically immobilized laccase was prepared and applied as an efficient heterogeneous biocatalyst for biodegradation of phenol from sesame oil. Laccase was attached covalently to magnetic Fe3O4 nanospheres and nanorods, and the characteristics of the immobilized enzyme were studied. The magnetic supports were analyzed by scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry, and Fourier-transform infrared spectroscopy. Storage stability analysis of immobilized enzyme showed that more than 70% of initial activity was kept after 15 days at 4 °C. More than 70% phenol degradation was achieved and a 60% decrease in the activity of immobilized laccase was observed after 20 independent cycles. The development of enzyme immobilization techniques on magnetic supports may expand the potential applications of heterogeneous biocatalysts in food industries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azino-bis 3-ethylbenzthiazoline-6-sulfonic acid is a peroxidase substrate suitable for enzyme activity measurement.

APTES:

3-Triethoxysilylpropylamine was used for amination

FT-IR:

Fourier-transform infrared

IU:

The enzyme international unit, One U is defined as the amount of the enzyme that transforms one µmole of substrate / minute.

PAMAM:

Poly(amidoamine) is a type of dendrimer containing repetitively branched subunits of amide and amine moieties that is commonly used for surface modification.

PEG:

Polyethylene glycol

TEOS:

Tetraethyl orthosilicate

VSM:

Vibrating sample magnetometer, was used to determine magnetization properties of nanostructured iron oxide supports.

XRD:

X-ray diffraction, was used to study the structure, composition, and physical properties of synthesized MNPs.

SEM:

Scanning electron microscope was used as a sample imaging tool

References

  1. Mattinen ML, Struijs K, Suortti T, Mattila I, Kruus K, Willfor S, Tamminen T, Vincken JV (2009) BioResources 4:482–496

    CAS  Google Scholar 

  2. Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N (2016) Curr Pollut Rep 2:157–167

    CAS  Google Scholar 

  3. Wang F, Hua Y, Guo C, Huang W, Liu CZ (2012) Bioresour Technol 110:120–124

    PubMed  CAS  Google Scholar 

  4. Tavares APM, Pinho B, Rodriguez O, Macedo EA (2012) Proc Eng 42:226–230

    Google Scholar 

  5. Zeb A, Muhammad B, Ullah F (2017) Food Meas 11:1362–1369

    Google Scholar 

  6. Couto SR, Herrera JLT (2006) Biotechnol Adv 24:500–513

    Google Scholar 

  7. Mate DM, Alcalde M (2016) Microb Biotechnol 10:1457–1467

    PubMed  PubMed Central  Google Scholar 

  8. Kunamneni A, Camarero S, Burgos CG, Plou FJ, Ballesteros A, Alcalde M (2008) Microb Cell Fact 7:32

    PubMed  PubMed Central  Google Scholar 

  9. Maeda K, Yagita H, Omata K, Fujioto K (1992) J Mol Catal 71:347–355

    CAS  Google Scholar 

  10. Antebi S, Arya P, Manzer LE, Alper H (2002) J Org Chem 67:6623–6631

    PubMed  CAS  Google Scholar 

  11. Jesionowski T, Zdarta J, Krajewska B (2014) Adsorption 20:801–821

    CAS  Google Scholar 

  12. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Pro Polym Sci 38:1232–1261

    CAS  Google Scholar 

  13. Huang D, Deng C, Zhang X (2014) Anal Methods 6:7130–7141

    CAS  Google Scholar 

  14. Sun J, Zhang Y, Yang F, Ma M, Xiong F, Gu N (2018) Chin Sci Bull 64:842–853

    Google Scholar 

  15. Bagheri M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Rogers RD (2008) Biomacromol 9:381–387

    CAS  Google Scholar 

  16. Roberts JC, Bhalgat MK, Zera RT (1996) J Biomed Mater Res 30:53–65

    PubMed  CAS  Google Scholar 

  17. Boas U, Christensen JB, Heegaard PMH (2006) Dendrimers in medicine and biotechnology. RSC, Cambridge

    Google Scholar 

  18. Amin R, Khorshidi A, Fallah Shojaei A, Rezaei S, Faramarzi MA (2018) Int J Biol Macromol 114:106–113

    PubMed  CAS  Google Scholar 

  19. Zhang Z, Kong J (2011) J Hazard Mater 193:325–329

    PubMed  CAS  Google Scholar 

  20. Cui Y, Li Y, Yang Y, Liu X, Lei L, Zhou L, Pan F (2010) J Biotechnol 150:171–174

    PubMed  CAS  Google Scholar 

  21. Ge F, Li M, Ye H, Zhao B (2012) J Hazard Mater 211:366–372

    PubMed  Google Scholar 

  22. Khodadust R, Unsoy G, Yalcın S, Gunduz G, Gunduz U (2013) J Nanopart Res 15:1488

    Google Scholar 

  23. He K, Xu C, Zhen L, Shao W (2007) Mater Lett 61:3159–3162

    CAS  Google Scholar 

  24. Patel SK, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK (2014) J Microbiol Biotechnol 24:639–647

    PubMed  CAS  Google Scholar 

  25. Mogharabi M, Kiani M, Aryanejad S, Imanparast S, Amini M, Faramarzi MA (2018) Adv Synth Catal 360:3563–3571

    Google Scholar 

  26. Rezaei S, Tahmasbi H, Mogharabi M, Firuzyar S, Ameri A, Khoshayand MR, Faramarzi MA (2015) J Taiwan Inst Chem Eng 56:113–121

    CAS  Google Scholar 

  27. Slinkard K, Singleton VL (1977) Am J Enol Vitic 28:49–55

    CAS  Google Scholar 

  28. Liu J, Liu S, Zhuang S, Wang X, Tu F (2013) Ionics 19:1255–1261

    CAS  Google Scholar 

  29. Jang JH, Lim HB (2010) Microchem J 94:148–158

    CAS  Google Scholar 

  30. Li QY, Wang PY, Zhou YL, Nie ZR, Wei Q (2016) J Sol-Gel Sci Technol 78:523–530

    CAS  Google Scholar 

  31. Wang P, Li Q, Zhou Y, Wei Q, Nie Z (2016) Key Eng Mater 697:749–755

    Google Scholar 

  32. Wan J, Yao Y, Tang G (2007) Appl Phys A Mater Sci Process 89:529–532

    CAS  Google Scholar 

  33. Hwang ET, Gu MB (2013) Eng Life Sci 13:49–61

    CAS  Google Scholar 

  34. Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC (2011) Adv Synth Catal 353:2885–2904

    CAS  Google Scholar 

  35. Leonowicz A, Cho N, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) J Basic Microbiol 41:185–227

    PubMed  CAS  Google Scholar 

  36. Forootanfar H, Faramarzi MA (2015) Biotechnol Prog 31:1443–1463

    PubMed  CAS  Google Scholar 

  37. Zhu J, Sun G (2012) React Funct Polym 72:839–845

    CAS  Google Scholar 

  38. Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Bioresour Technol 101:8509–8514

    PubMed  CAS  Google Scholar 

  39. Sar M, Akgol S, Karatas M, Denizli A (2006) Ind Eng Chem Res 45:3036–3043

    Google Scholar 

  40. Sheldon RA (2007) Adv Synth Catal 349:1289–1307

    CAS  Google Scholar 

  41. Forde J, Tully E, Vakurov A, Gibson TD, Millner P, Ó'Fágáin C (2010) Enzym Microb Technol 46:430–437

    CAS  Google Scholar 

  42. Silva AM, Tavaresa APM, Rocha CMR, Cristóvão RO, Teixeira JA, Macedo EA (2012) Process Biochem 47:1095–1101

    Google Scholar 

  43. Rekuć A, Jastrzembska B, Liesiene J, Bryjak J (2009) J Mol Catal B 57:216–223

    Google Scholar 

  44. Cabana H, Jones JP, Agathos SN (2007) J Biotechnol 132:23–31

    PubMed  CAS  Google Scholar 

  45. Spinelli D, Fatarella E, Di Michele A, Pogni R (2013) Process Biochem 48:218–223

    CAS  Google Scholar 

  46. Çetinus ŞA, Öztop HN (2003) Enzym Microb Technol 32:889–894

    Google Scholar 

  47. Parmar I, Rpasinguhe HPV (2012) Bioresour Technol 124:433–439

    PubMed  CAS  Google Scholar 

  48. Alver E, Ülkü Metin A (2017) Int Biodeterior Biodegrad 125:235–242

    CAS  Google Scholar 

Download references

Acknowledgements

Support of this study by the research council of University of Guilan is gratefully acknowledged. Also many thanks for so much help to Professor Wolfgang Bensch and his working group at the Institute for Inorganic Chemistry (CAU, Kiel), to PD Dr. Christoph Plieth of Centre of Biochemistry and Molecular Biology (BiMo; CAU, Kiel), and to Professor Mohammad Ali Faramarzi and his working group, especially M. Mogharabi, at Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Khorshidi or Mohammad Ali Faramarzi.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, R., Khorshidi, A., Bensch, W. et al. Degradation of Sesame Oil Phenolics Using Magnetic Immobilized Laccase. Catal Lett 150, 3086–3095 (2020). https://doi.org/10.1007/s10562-020-03226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03226-8

Keywords

Navigation