Skip to main content
Log in

Highly Active and Stable Fe/SiO2 Catalyst Synthesized by Atomic Layer Deposition for CO Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Highly dispersed Fe nanoparticles (NPs) were deposited on SiO2 NPs by atomic layer deposition (ALD) in a scalable fluidized bed reactor at 400 ºC. In CO oxidation reactions, over the Fe/SiO2 catalyst, Fe2O3 played a vital role. In a long-term stability test of more than 300 h of CO oxidation reaction, there was almost no activity decrease of Fe/SiO2 at 550 ºC.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Biabani-Ravandi A, Rezaei M, Fattah Z (2013) Low-temperature CO oxidation over nanosized Fe–Co mixed oxide catalysts: Effect of calcination temperature and operational conditions. Chem Eng Sci 94:237–244

    Article  CAS  Google Scholar 

  2. Gac W (2007) The influence of silver on the structural, redox and catalytic properties of the cryptomelane-type manganese oxides in the low-temperature CO oxidation reaction. Appl Catal B 75:107–117

    Article  CAS  Google Scholar 

  3. Cui L, Zhao D, Yang Y, Wang Y, Zhang X (2017) Synthesis of highly efficient α-Fe2O3 catalysts for CO oxidation derived from MIL-100 (Fe). J Solid State Chem 247:168–172

    Article  CAS  Google Scholar 

  4. Cao L, Liu W, Luo Q, Yin R, Wang B, Weissenrieder J, Soldemo M, Yan H, Lin Y, Sun Z, Ma C, Zhang W, Chen S, Wang H, Guan Q, Yao T, Wei S, Yang J, Lu J (2019) Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565:631–635

    Article  CAS  Google Scholar 

  5. Li X-N, Yuan Z, He S-G (2014) CO oxidation promoted by gold atoms supported on titanium oxide cluster anions. J Am Chem Soc 136:3617–3623

    Article  CAS  Google Scholar 

  6. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry 3:634–641

    Article  CAS  Google Scholar 

  7. Mock SA, Sharp SE, Stoner TR, Radetic MJ, Zell ET, Wang R (2016) CeO2 nanorods-supported transition metal catalysts for CO oxidation. J Colloid Interface Sci 466:261–267

    Article  CAS  Google Scholar 

  8. Šmit G, Zrnčević S, Lázár K (2006) Adsorption and low-temperature oxidation of CO over iron oxides. J Mol Catal A: Chem 252:103–106

    Article  Google Scholar 

  9. Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003) The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B 43:151–162

    Article  CAS  Google Scholar 

  10. Laguna O, Centeno M, Boutonnet M, Odriozola JA (2011) Fe-doped ceria solids synthesized by the microemulsion method for CO oxidation reactions. Appl Catal B 106:621–629

    Article  CAS  Google Scholar 

  11. Sahoo TR, Armandi M, Arletti R, Piumetti M, Bensaid S, Manzoli M, Panda SR, Bonelli B (2017) Pure and Fe-doped CeO2 nanoparticles obtained by microwave assisted combustion synthesis: Physico-chemical properties ruling their catalytic activity towards CO oxidation and soot combustion. Appl Catal B 211:31–45

    Article  CAS  Google Scholar 

  12. Li F, Zhao J, Chen Z (2012) Fe-anchored graphene oxide: A low-cost and easily accessible catalyst for low-temperature CO oxidation. J Phys Chem C 116:2507–2514

    Article  CAS  Google Scholar 

  13. Wu P, Du P, Zhang H, Cai C (2015) Graphyne-supported single Fe atom catalysts for CO oxidation. Phys Chem Chem Phys 17:1441–1449

    Article  CAS  Google Scholar 

  14. Tang Y, Zhou J, Shen Z, Chen W, Li C, Dai X (2016) High catalytic activity for CO oxidation on single Fe atom stabilized in graphene vacancies. RSC Adv 6:93985–93996

    Article  CAS  Google Scholar 

  15. Shang Z, Patel RL, Evanko BW, Liang X (2013) Encapsulation of supported metal nanoparticles with an ultra-thin porous shell for size-selective reactions. Chem Commun 49:10067–10069

    Article  CAS  Google Scholar 

  16. Gould TD, Lubers AM, Neltner BT, Carrier JV, Weimer AW, Falconer JL, Will Medlin J (2013) Synthesis of supported Ni catalysts by atomic layer deposition. J Catal 303:9–15

    Article  CAS  Google Scholar 

  17. Wang X, Hu W, Deng B, Liang X (2017) Selective hydrogenation of citral over supported Pt catalysts: Insight into support effects. J Nanopart Res 19(4):153

    Article  Google Scholar 

  18. Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C, Li J, Wei S, Lu J (2015) Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1, 3-butadiene. J Am Chem Soc 137:10484–10487

    Article  CAS  Google Scholar 

  19. Patel RL, Jiang Y-B, Liang X (2015) Highly porous titania films coated on sub-micron particles with tunable thickness by molecular layer deposition in a fluidized bed reactor. Ceram Int 41:2240–2246

    Article  CAS  Google Scholar 

  20. Wang X, Zhao H, Wu T, Liu Y, Liang X (2016) Synthesis of highly dispersed and highly stable supported Au-Pt bimetallic catalysts by a two-step method. Catal Lett 146:2606–2613

    Article  CAS  Google Scholar 

  21. Khoudiakov M, Gupta MC, Deevi S (2005) Au/Fe2O3 nanocatalysts for CO oxidation: A comparative study of deposition–precipitation and coprecipitation techniques. Appl Catal A 291:151–161

    Article  CAS  Google Scholar 

  22. Xi X, Ma S, Chen J-F, Zhang Y (2014) Promotional effects of Ce, Mn and Fe oxides on CuO/SiO2 catalysts for CO oxidation. J Env Chem Eng 2:1011–1017

    Article  CAS  Google Scholar 

  23. Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) A reactive oxide overlayer on rhodium nanoparticles during co oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 47:8893–8896

    Article  CAS  Google Scholar 

  24. Qadir K, Joo SH, Mun BS, Butcher DR, Renzas JR, Aksoy F, Liu Z, Somorjai GA, Park JY (2012) Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS. Nano Lett 12:5761–5768

    Article  CAS  Google Scholar 

  25. Gould TD, Lubers AM, Neltner BT, Carrier JV, Weimer AW, Falconer JL, Medlin JW (2013) Synthesis of supported Ni catalysts by atomic layer deposition. J Catal 303:9–15

    Article  CAS  Google Scholar 

  26. Jiang C, Shang Z, Liang X (2015) Chemoselective transfer hydrogenation of nitroarenes catalyzed by highly dispersed, supported nickel nanoparticles. ACS Catal 5:4814–4818

    Article  CAS  Google Scholar 

  27. Walker JS, Straguzzi GI, Manogue WH, Schuit GCA (1988) Carbon monoxide and propene oxidation by iron oxides for auto-emission control. J Catal 110:298–309

    Article  CAS  Google Scholar 

  28. Li Y, Yu Y, Wang J-G, Song J, Li Q, Dong M, Liu C-J (2012) CO oxidation over graphene supported palladium catalyst. Appl Catal B 125:189–196

    Article  CAS  Google Scholar 

  29. Qi J, Chen J, Li G, Li S, Gao Y, Tang Z (2012) Facile synthesis of core–shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy Environ Sci 5:8937–8941

    Article  CAS  Google Scholar 

  30. Wang W-W, Zhu Y-J, Ruan M-L (2007) Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J Nanopart Res 9:419–426

    Article  CAS  Google Scholar 

  31. De Faria D, Venâncio Silva S, De Oliveira M (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Article  Google Scholar 

  32. Jung C-H, Yun J, Qadir K, Naik B, Yun J-Y, Park JY (2014) Catalytic activity of Pt/SiO2 nanocatalysts synthesized via ultrasonic spray pyrolysis process under CO oxidation. Appl Catal B 154–155:171–176

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation grant NSF 1803812. The authors thank Dr. Jessica TerBush at the Materials Research Center at Missouri University of Science and Technology for TEM analysis. The authors also thank Electron Microscopy Core Facility (EMC) and the Office of Research at University of Missouri for supporting the TEM work at EMC. Portions of the TEM work were supported by the “Excellence in Electron Microscopy “ award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Liang.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2850 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Jin, B., He, X. et al. Highly Active and Stable Fe/SiO2 Catalyst Synthesized by Atomic Layer Deposition for CO Oxidation. Catal Lett 150, 3296–3303 (2020). https://doi.org/10.1007/s10562-020-03224-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03224-w

Keywords

Navigation