Skip to main content

Advertisement

Log in

The Construction of Au–Fe–TS-1 Interface Coupling Structure for Improving Catalytic Performance of Propylene Epoxidation with H2 and O2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The gas-phase propylene epoxidation for noble metal system as a green process has confronted a great challenging task in metal utilization and stability. In this work, we realize the enhancement of Au capture efficiency and high-dispersed Au nanoparticles by supports modification and interfacial regulation to construct Au–Fe–TS-1 interface coupling structure. The Au capture efficiency of the optimum catalyst arrived at 69% and it displayed a 7.3% C3H6 conversion with a PO selectivity of 89.9%, giving a H2 efficiency of about 25.7%. Then some typical characterizations systematically elucidate that Fe is not only incorporated into TS-1 framework and captures Au species with high dispersion and stability, but also inhibits the losing of Ti species. Furthermore, Fe-modified catalysts change the property of Au active site and maintain lower apparent activation energy. This report may provide a new strategy to design advanced catalysts for enhancing metal utilization efficiency by the construction of interface coupling structure.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khatib SJ, Oyama ST (2015) Catal Rev 57:306

    CAS  Google Scholar 

  2. Lambert RM, Williams FJ, Cropley RL, Palermo A (2005) J Mol Catal A 228:27

    CAS  Google Scholar 

  3. Huang JH, Haruta M (2012) Res Chem Intermed 38:1

    Google Scholar 

  4. Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006) Ind Eng Chem Res 45:3447

    CAS  Google Scholar 

  5. Huang JH, Takei T, Akita T, Ohashi H, Haruta M (2010) Appl Catal B 95:430

    CAS  Google Scholar 

  6. Lu JQ, Zhang XM, Bravo-Suárez JJ, Fujitani T, Oyama ST (2009) Catal Today 147:186

    CAS  Google Scholar 

  7. Lee WS, Akatay MC, Stach EA, Ribeiro FH, Delgass NW (2013) J Catal 308:98

    CAS  Google Scholar 

  8. Yu B, Ayvalı T, Raine E, Li T, Li MMJ, Zheng JW, Wu S, Bagabas AA, Tsang SCE (2019) Appl Catal B 243:304

    CAS  Google Scholar 

  9. Ghosh S, Acharyya SS, Tiwari R, Sarkar B, Singha RK, Pendem C, Sasaki T, Bal R (2014) ACS Catal 4:2169

    CAS  Google Scholar 

  10. Seubsai A, Kahn M, Zohour B, Noon D, Charoenpanich M, Senkan S (2015) Ind Eng Chem Res 54:2638

    CAS  Google Scholar 

  11. Li NX, Yang B, Liu M, Chen Y, Zhou JC (2017) Chin J Catal 38:831

    CAS  Google Scholar 

  12. Hayashi T, Tanaka K, Haruta M (1998) J Catal 178:566

    CAS  Google Scholar 

  13. Kanungo S, Keshri KS, van Hoof AJF, d’Angelo MFN, Schouten JC, Nijhuis TA, Hensen EJM, Chowdhury B (2016) J Catal 344:434

    CAS  Google Scholar 

  14. Feng X, Sheng N, Liu YB, Chen XB, Chen D, Yang CH, Zhou XG (2017) ACS Catal 7:2668

    CAS  Google Scholar 

  15. Li ZS, Wang YN, Zhang JH, Wang DY, Ma WH (2017) Catal Commun 90:87

    CAS  Google Scholar 

  16. Chen D, Zou Y, Wang S (2019) Mater Today Energy 12:250

    Google Scholar 

  17. Zhao W, Zhang J, Zhu X, Zhang M, Tang J, Tan M, Wang Y (2014) Appl Catal B 144:468

    CAS  Google Scholar 

  18. Liu T, Hacarlioglu P, Oyama ST, Luo MF, Pan XR, Lu JQ (2009) J Catal 267:202

    CAS  Google Scholar 

  19. Feng X, Yang J, Duan XZ, Cao YQ, Chen BX, Chen WY, Lin D, Qian G, Chen D, Yang CH, Zhou XG (2018) ACS Catal 8:7799

    CAS  Google Scholar 

  20. Chen GX, Zhao Y, Fu G, Duchesne PN, Gu L, Zheng YP, Weng XF, Chen MS, Zhang P, Pao CW, Lee JF, Zheng NF (2014) Science 344:495

    CAS  PubMed  Google Scholar 

  21. Chen GX, Xu CF, Huang XQ, Ye JY, Gu L, Li G, Tang ZC, Wu BH, Yang HY, Zhao ZP, Zhou ZY, Fu G, Zheng NF (2016) Nat Mater 15:564

    CAS  PubMed  Google Scholar 

  22. Du ST, Chen XX, Sun QM, Wang N, Jia MJ, Valtchevac V, Yu JH (2016) Chem Commun (Camb) 52:3580

    CAS  Google Scholar 

  23. Du CL, Cui N, Li LH, Hua ZL, Shi JL (2019) RSC Adv 9:9694

    CAS  Google Scholar 

  24. Akamatsu K, Ikeda S, Nawafune H, Deki S (2003) Chem Mater 15:2488

    CAS  Google Scholar 

  25. Akamatsu K, Shinkai H, Ikeda S, Adachi S, Nawafune H, Tomita S (2005) J Am Chem Soc 127:7980

    CAS  PubMed  Google Scholar 

  26. Ikeda S, Yanagimoto H, Akamatsu K, Nawafune H (2007) Adv Func Mater 17:889

    CAS  Google Scholar 

  27. Grätzel M (2001) Nature 414:338

    PubMed  Google Scholar 

  28. Yang T, Tatsuma T (2005) J Am Chem Soc 127:7632

    Google Scholar 

  29. Parida KM, Sahu N, Mohapatra P, Scurrell MS (2010) J Mol Catal A 319:92

    CAS  Google Scholar 

  30. Carrettin S, Hao YL, Aguilar-Guerrero V, Gates BC, Trasobares S, Calvino JJ, Corma A (2007) Chemistry 13:7771

    CAS  PubMed  Google Scholar 

  31. Cumaranatunge L, Delgass WN (2005) J Catal 232:38

    CAS  Google Scholar 

  32. Feng X, Duan XZ, Qian G, Zhou XG, Chen D, Yuan WK (2014) J Catal 317:99

    CAS  Google Scholar 

  33. Llorca J, Dominguez M, Ledesma C, Chimentao R, Medina F, Sueiras J, Angurell I, Seco M, Rossell O (2008) J Catal 258:187

    CAS  Google Scholar 

  34. Liu XY, Wang AQ, Li L, Zhang T, Mou CY, Lee JF (2011) J Catal 278:288

    CAS  Google Scholar 

  35. Xiong G, Jia QY, Cao YY, Liu LQ, Guo ZD (2017) RSC Adv 7:24046

    Google Scholar 

  36. Tsai S-T, Chao P-Y, Tsai T-C, Wang I, Liu X, Guo X-W (2009) Catal Today 148:174

    CAS  Google Scholar 

  37. Hu Z, Li K, Wu X, Wang N, Li X, Li Q, Li L, Lv K (2019) Appl Catal B 256:117860

    CAS  Google Scholar 

  38. Song P, Qin H, Liu X, Huang S, Zhang R, Hu J, Jiang M (2006) Sens Actuators B 119:415

    CAS  Google Scholar 

  39. Zanella R, Louis C, Giorgio S, Touroude R (2004) J Catal 223:328

    CAS  Google Scholar 

  40. Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 106:7634

    CAS  Google Scholar 

  41. Alba MD, Luan Z, Klinowski J (1996) J Phys Chem 100:2178

    CAS  Google Scholar 

  42. Jiang GM, Huang YX, Zhang S, Zhu HY, Wu ZB, Sun SH (2016) Nanoscale 8:17947

    CAS  PubMed  Google Scholar 

  43. Notari B (1988) Stud Surf Sci Catal 37:413

    CAS  Google Scholar 

  44. Mal NK, Ramaswamy V, Ganapathy S, Ramaswamy AV (1995) Appl Catal A 125:233

    CAS  Google Scholar 

  45. Vayssilov GN (1997) Catal Rev 39:209

    CAS  Google Scholar 

  46. Wu M, Chou L, Song H (2012) Catal Lett 142:627

    CAS  Google Scholar 

  47. Wang XH, Li JG, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T (2005) J Am Chem Soc 127:10982

    CAS  PubMed  Google Scholar 

  48. Chou J, McFarland EW (2004) Chem Commun 14:1648

    Google Scholar 

  49. Sinha AK, Seelan S, Tsubota S, Haruta M (2004) Ang Chem Int Ed 43:1546

    CAS  Google Scholar 

  50. Nijhuis TA, Visser T, Weckhuysen BM (2005) Angew Chem Int Ed 44:1115

    CAS  Google Scholar 

  51. Uphade BS, Tsubota S, Hayashi T, Haruta M (1998) Chem Lett 27:1277

    Google Scholar 

  52. Qi CX, Huang JH, Bao SQ, Su HJ, Akita T, Haruta M (2011) J Catal 281:12

    CAS  Google Scholar 

  53. Taylor B, Lauterbach J, Delgass WN (2005) Appl Catal A 291:188

    CAS  Google Scholar 

  54. Boronat M, Corma A (2010) Dalton Trans 39:8538

    CAS  PubMed  Google Scholar 

  55. Santos A, Lewis RJ, Malta G, Howe AG, Morgan DJ (2019) Ind Eng Chem Res 58:12623

    CAS  Google Scholar 

  56. Linh NH, Nguyen TQ, Diño WA, Kasai H (2015) Surf Sci 633:38

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 21571036). The author would like to thank Dr. Xinqi Zhang from testing center for helping on the analysis of TEM results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingming Huang or Xiaohui Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gao, A., Wan, Z. et al. The Construction of Au–Fe–TS-1 Interface Coupling Structure for Improving Catalytic Performance of Propylene Epoxidation with H2 and O2. Catal Lett 150, 3149–3158 (2020). https://doi.org/10.1007/s10562-020-03222-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03222-y

Keywords

Navigation