Skip to main content

Advertisement

Log in

Square CdS Micro/Nanosheets as Efficient Photo/Piezo-bi-Catalyst for Hydrogen Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cadmium sulfide (CdS) is a member of an important subgroup of two-dimensional (2D) transition metal dichalcogenides that can promote a number of useful oxidation reactions under visible light and ultrasonic vibrations. Herein, we report a low-cost hydrothermal method assisted by DL-dithiothreitol for controlling the thickness of CdS nanosheets. In particular, square-like CdS nanosheets with a thickness of 28 nm were acquired at a molar ratio of 2:1 of DL-dithiothreitol to a cadmium source. Furthermore, a significant connection was observed between CdS nanosheet thickness and photocatalytic H2 evolution. Thin square nanosheets exhibited high photocatalytic activity under the combination of light and vibrational energy. These nanosheets can be assigned to active sites due to an increase in surface area and can induce a piezoelectric field in CdS via ultrasound. Thickness differences exert a critical synergy effect on photo/piezo-bi-catalyst performance. The thinnest product achieved the maximum photocatalytic H2 production yield (1293.62 μmol g–1 h−1), which is approximately 4.2 times that of the 0-CdS micro-sheets (284.26 μmol g–1 h−1). This report illustrates the effect of CdS nanosheet thickness on photo/piezo-bi-catalytic H2-production operation and provides inspiration for engineers to develop high-efficiency two-dimension photocatalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ganguly P, Harb M, Cao Z et al (2019) 2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Lett 4:1687–1709. https://doi.org/10.1021/acsenergylett.9b00940

    Article  CAS  Google Scholar 

  2. Finegold L, Cude JL (1972) Biological sciences: One and two-dimensional structure of alpha-helix and beta-sheet forms of poly(L-Alanine) shown by specific heat measurements at low temperatures (1.5-20 K). Nature 238:38–40. https://doi.org/10.1038/238038a0

    Article  CAS  PubMed  Google Scholar 

  3. Wen J, Li X, Liu W et al (2015) Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Cuihua Xuebao/Chinese J Catal 36:2049–2070. https://doi.org/10.1016/S1872-2067(15)60999-8

    Article  CAS  Google Scholar 

  4. Wen J, Xie J, Chen X, Li X (2017) A review on g-C 3 N 4 -based photocatalysts. Appl Surf Sci 391:72–123. https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  5. Hu T, Dai K, Zhang J et al (2019) Noble-metal-free Ni2P as cocatalyst decorated rapid microwave solvothermal synthesis of inorganic-organic CdS-DETA hybrids for enhanced photocatalytic hydrogen evolution. Appl Surf Sci 481:1385–1393

    Article  CAS  Google Scholar 

  6. Ren D, Shen R, Jiang Z et al (2020) Highly efficient visible-light photocatalytic H2 evolution over 2D–2D CdS/Cu7S4 layered heterojunctions. Chinese J Catal 41:31–40

    Article  CAS  Google Scholar 

  7. Yu W, Zhang S, Chen J et al (2018) Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution. J Mater Chem A 6:15668–15674

    Article  CAS  Google Scholar 

  8. Zhou FQ, Fan JC, Xu QJ, Min YL (2017) BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Appl Catal B 201:77–83. https://doi.org/10.1016/j.apcatb.2016.08.027

    Article  CAS  Google Scholar 

  9. Fang Z, Wang Y, Song J et al (2013) Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution. Nanoscale 5:9830–9838. https://doi.org/10.1039/c3nr03043a

    Article  CAS  PubMed  Google Scholar 

  10. Yin S, Han J, Zou Y et al (2016) A highly efficient noble metal free photocatalytic hydrogen evolution system containing MoP and CdS quantum dots. Nanoscale 8:14438–14447. https://doi.org/10.1039/c6nr00989a

    Article  CAS  PubMed  Google Scholar 

  11. Yu J, Yu Y, Cheng B (2012) Enhanced visible-light photocatalytic H 2-production performance of multi-armed CdS nanorods. RSC Adv 2:11829–11835. https://doi.org/10.1039/c2ra22019a

    Article  CAS  Google Scholar 

  12. He K, Wang M, Guo L (2015) Novel-CdS-nanorod with stacking fault structures: Preparation and properties of visible-light-driven photocatalytic hydrogen production from water. Chem Eng J 279:747–756. https://doi.org/10.1016/j.cej.2015.04.069

    Article  CAS  Google Scholar 

  13. Kim W, Monllor-Satoca D, Chae WS et al (2019) Enhanced photoelectrochemical and hydrogen production activity of aligned CdS nanowire with anisotropic transport properties. Appl Surf Sci 463:339–347. https://doi.org/10.1016/j.apsusc.2018.08.127

    Article  CAS  Google Scholar 

  14. Jang JS, Joshi UA, Lee JS (2007) Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C 111:13280–13287. https://doi.org/10.1021/jp072683b

    Article  CAS  Google Scholar 

  15. Garg P, Bhauriyal P, Mahata A et al (2019) Role of dimensionality for photocatalytic water splitting: cds nanotube versus bulk structure. ChemPhysChem. https://doi.org/10.1002/cphc.201801051

    Article  PubMed  Google Scholar 

  16. Ju L, Dai Y, Wei W et al (2018) One-dimensional cadmium sulphide nanotubes for photocatalytic water splitting. Phys Chem Chem Phys 20:1904–1913. https://doi.org/10.1039/c7cp06568j

    Article  CAS  PubMed  Google Scholar 

  17. Xu Y, Zhao W, Xu R et al (2013) Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem Commun 49:9803–9805. https://doi.org/10.1039/c3cc46342g

    Article  CAS  Google Scholar 

  18. Ning X, Wu Y, Ma X et al (2019) A novel charge transfer channel to simultaneously enhance photocatalytic water splitting activity and stability of CdS. Adv Funct Mater 29:1–9. https://doi.org/10.1002/adfm.201902992

    Article  CAS  Google Scholar 

  19. Cheng L, Xiang Q, Liao Y, Zhang H (2018) CdS-based photocatalysts. Energy Environ Sci 11:1362–1391. https://doi.org/10.1039/c7ee03640j

    Article  CAS  Google Scholar 

  20. Di T, Zhu B, Zhang J et al (2016) Enhanced photocatalytic H2 production on CdS nanorod using cobalt-phosphate as oxidation cocatalyst. Appl Surf Sci 389:775–782

    Article  CAS  Google Scholar 

  21. Zou J, Cao Y, Sun Y et al (2018) A comparative study of the photoconduction, photocatalytic and electrocatalytic performance of gC 3 N 4/ZnS/CuS heterojunctions with different morphologies. Catal Letters 148:3342–3348

    Article  CAS  Google Scholar 

  22. Yang Y, Zhang D, Xiang Q (2019) Plasma-modified Ti 3 C 2 T x/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production. Nanoscale 11:18797–18805

    Article  CAS  Google Scholar 

  23. Yan X, Xu B, Yang X et al (2019) Through hydrogen spillover to fabricate novel 3DOM-HxWO3/Pt/CdS Z-scheme heterojunctions for enhanced photocatalytic hydrogen evolution. Appl Catal B 256:117812. https://doi.org/10.1016/j.apcatb.2019.117812

    Article  CAS  Google Scholar 

  24. Ma Q, Peng X, Zhu M et al (2018) Strategic modulation of electron migration in the TiO2-Au-CdS: Z-scheme design for the enhancement in hydrogen evolution reaction. Electrochem Commun 95:28–32. https://doi.org/10.1016/j.elecom.2018.08.010

    Article  CAS  Google Scholar 

  25. Zhang Y, Jin Z, Yan X et al (2019) Effect of Ni (OH) 2 on CdS@ gC 3 N 4 composite for efficient photocatalytic hydrogen production. Catal Lett 149:1174–1185

    Article  CAS  Google Scholar 

  26. Cheng L, Zhang D, Fan J et al (2020) Metal phosphide modified CdxZn1− xS solid solutions as a highly active visible-light photocatalyst for hydrogen evolution. Appl Catal A 590:117336

    Article  CAS  Google Scholar 

  27. Li X, Yu J, Wageh S et al (2016) Graphene in photocatalysis: a review. Small 12:6640–6696. https://doi.org/10.1002/smll.201600382

    Article  CAS  PubMed  Google Scholar 

  28. Ranjan R, Sinha ASK (2019) Optimizations of r GO supported CdS photo-electrocatalyst for dissociation of water. Int J Hydrogen Energy 44:5955–5969. https://doi.org/10.1016/j.ijhydene.2019.01.112

    Article  CAS  Google Scholar 

  29. Mu R, Ao Y, Wu T et al (2020) Synergistic effect of molybdenum nitride nanoparticles and nitrogen-doped carbon on enhanced photocatalytic hydrogen evolution performance of CdS nanorods. J Alloys Compd 812:151990. https://doi.org/10.1016/j.jallcom.2019.151990

    Article  CAS  Google Scholar 

  30. Yan H, Yang J, Ma G et al (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266:165–168. https://doi.org/10.1016/j.jcat.2009.06.024

    Article  CAS  Google Scholar 

  31. Liang Z, Yan CF, Rtimi S, Bandara J (2019) Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook. Appl Catal B Environ 241:256–269. https://doi.org/10.1016/j.apcatb.2018.09.028

    Article  CAS  Google Scholar 

  32. Cheng L, Zhang D, Liao Y et al (2019) One-step solid-phase synthesis of 2D ultrathin CdS nanosheets for enhanced visible-light photocatalytic hydrogen evolution. Sol RRL 1900062:1900062. https://doi.org/10.1002/solr.201900062

    Article  CAS  Google Scholar 

  33. Mushtaq F, Chen X, Hoop M et al (2018) Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation. iScience 4:236–246. https://doi.org/10.1016/j.isci.2018.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang ZL (2012) Progress in piezotronics and piezo-phototronics. Adv Mater 24:4632–4646. https://doi.org/10.1002/adma.201104365

    Article  CAS  PubMed  Google Scholar 

  35. Yein WT, Wang Q, Li Y, Wu X (2019) Piezoelectric potential induced the improved micro-pollutant dye degradation of Co doped MoS2 ultrathin nanosheets in dark. Catal Commun 125:61–65. https://doi.org/10.1016/j.catcom.2019.03.023

    Article  CAS  Google Scholar 

  36. Ismail M, Wu Z, Zhang L et al (2019) High-efficient synergy of piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial for dye decomposition. Chemosphere 228:212–218. https://doi.org/10.1016/j.chemosphere.2019.04.121

    Article  CAS  PubMed  Google Scholar 

  37. Lin YF, Song J, Ding Y et al (2008) Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect. Adv Mater 20:3127–3130. https://doi.org/10.1002/adma.200703236

    Article  CAS  Google Scholar 

  38. Hinchet R, Khan U, Falconi C, Kim SW (2018) Piezoelectric properties in two-dimensional materials: simulations and experiments. Mater Today 21:611–630. https://doi.org/10.1016/j.mattod.2018.01.031

    Article  CAS  Google Scholar 

  39. Zhao Y, Bin FZ, Feng W et al (2018) Hydrogen production from pure water via piezoelectric-assisted visible-light photocatalysis of CdS nanorod arrays. ChemCatChem 10:3397–3401. https://doi.org/10.1002/cctc.201800666

    Article  CAS  Google Scholar 

  40. Zhao Y, Huang X, Gao F et al (2019) Study on water splitting characteristics of CdS nanosheets driven by the coupling effect between photocatalysis and piezoelectricity. Nanoscale 11:9085–9090. https://doi.org/10.1039/c9nr01676g

    Article  CAS  PubMed  Google Scholar 

  41. Mi Y, Zhou M, Wen L et al (2014) A highly efficient visible-light driven photocatalyst: two dimensional square-like bismuth oxyiodine nanosheets. Dalt Trans 43:9549–9556. https://doi.org/10.1039/c4dt00798k

    Article  CAS  Google Scholar 

  42. Wu A, Tian C, Jiao Y et al (2017) Sequential two-step hydrothermal growth of MoS2/CdS core-shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution. Appl Catal B 203:955–963. https://doi.org/10.1016/j.apcatb.2016.11.009

    Article  CAS  Google Scholar 

  43. Al Balushi BSM, Al Marzouqi F, Al Wahaibi B et al (2018) Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Appl Surf Sci 457:559–565. https://doi.org/10.1016/j.apsusc.2018.06.286

    Article  CAS  Google Scholar 

  44. Jin J, Yu J, Liu G, Wong PK (2013) Single crystal CdS nanowires with high visible-light photocatalytic H 2-production performance. J Mater Chem A 1:10927–10934. https://doi.org/10.1039/c3ta12301d

    Article  CAS  Google Scholar 

  45. Yu J, Yu Y, Zhou P et al (2014) Morphology-dependent photocatalytic H2-production activity of CdS. Appl Catal B 156–157:184–191. https://doi.org/10.1016/j.apcatb.2014.03.013

    Article  CAS  Google Scholar 

  46. You D, Pan B, Jiang F et al (2016) CdS nanoparticles/CeO 2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity. Appl Surf Sci 363:154–160. https://doi.org/10.1016/j.apsusc.2015.12.021

    Article  CAS  Google Scholar 

  47. Li Y, Yang M, Xing Y et al (2017) Preparation of carbon-rich g-C3N4 nanosheets with enhanced visible light utilization for efficient photocatalytic hydrogen production. Small 13:1–8. https://doi.org/10.1002/smll.201701552

    Article  CAS  Google Scholar 

  48. Abbood HA, Ahmed KAM, Ren Y, Huang K (2013) MnV2O6×V2O5 cross-like nanobelt arrays: synthesis, characterization and photocatalytic properties. Appl Phys A Mater Sci Process 112:901–909. https://doi.org/10.1007/s00339-012-7444-y

    Article  CAS  Google Scholar 

  49. Sun Y, Gao S, Lei F, Xie Y (2015) Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem Soc Rev 44:623–636. https://doi.org/10.1039/c4cs00236a

    Article  CAS  PubMed  Google Scholar 

  50. Xue C, Yan X, An H et al (2018) Applied catalysis B: environmental bonding CdS-Sn 2 S 3 eutectic clusters on graphene nanosheets with unusually photoreaction-driven structural reconfiguration effect for excellent H2 evolution and Cr (VI) reduction. Appl Catal B 222:157–166. https://doi.org/10.1016/j.apcatb.2017.10.008

    Article  CAS  Google Scholar 

  51. Jyothi KP, Yesodharan S, Yesodharan EP (2014) Ultrasonics Sonochemistry ultrasound (US), ultraviolet light (UV) and combination (US + UV) assisted semiconductor catalysed degradation of organic pollutants in water: oscillation in the concentration of hydrogen peroxide formed in situ. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2014.03.019

    Article  PubMed  Google Scholar 

  52. Xu Y, Huang Y, Zhang B (2016) Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: The case of cadmium chalcogenides. Inorg Chem Front 3:591–615. https://doi.org/10.1039/c5qi00217f

    Article  CAS  Google Scholar 

  53. Ning X, Lu G (2020) Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale 12:1213–1223. https://doi.org/10.1039/C9NR09183A

    Article  CAS  PubMed  Google Scholar 

  54. Nasir JA, Ambareen H, Khan A et al (2018) Photoreduction of 4-nitrophenol to 4-aminophenol using CdS nanorods. J Nanosci Nanotechnol 18:7516–7522. https://doi.org/10.1166/jnn.2018.16092Solar

    Article  CAS  Google Scholar 

  55. Khan A, Khan A, Ambareen H et al (2017) light driven photocatalytic conversion of p-nitrophenol to p-aminophenol on CdS nanosheets and nanorods. Inorg Chem Commun 79:99–103. https://doi.org/10.1016/j.inoche.2017.03.033

    Article  CAS  Google Scholar 

  56. Chandrasekaran S, Yao L, Deng L et al (2019) Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev 48:4178–4280. https://doi.org/10.1039/c8cs00664d

    Article  CAS  PubMed  Google Scholar 

  57. Zhou M, Chen J, Hou C et al (2019) Organic-free synthesis of porous CdS sheets with controlled windows size on bacterial cellulose for photocatalytic degradation and H 2 production. Appl Surf Sci 470:908–916. https://doi.org/10.1016/j.apsusc.2018.11.207

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hayder A. Abbood or Kaixun Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbood, H.A., Alabadi, A., Al-Hawash, A.B. et al. Square CdS Micro/Nanosheets as Efficient Photo/Piezo-bi-Catalyst for Hydrogen Production. Catal Lett 150, 3059–3070 (2020). https://doi.org/10.1007/s10562-020-03221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03221-z

Keywords

Navigation