Skip to main content
Log in

In Situ DRIFTS Investigation of Ethylene Oxidation on Ag and Ag/Cu on Reduced Graphene Oxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO) was synthesized and impregnated with silver and silver/copper for in situ DRIFTS investigation of ethylene oxidation. The catalysts were characterized using different techniques. SEM micrographs showed that the metals are dispersed on the rGO surface. XPS results showed the presence of the metallic silver and copper as CuO and Cu2O oxides. The in situ DRIFTS showed that in both catalysts the total oxidation of ethylene reaction prevails besides the intermediate formation of acetaldehyde. The presence of Cu ions or CuO and Cu2O at the surface indicate the presence of electronic structure, which may enhance the oxidation reaction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Greiner MT et al (2015) The oxidation of copper catalysts during ethylene epoxidation. Phys Chem Chem Phys 17(38):25073–25089

    CAS  PubMed  Google Scholar 

  2. Li CJ, Bi X (2018) Silver catalysis in organic synthesis, 1st edn. Wiley, New York

    Google Scholar 

  3. Lefort TE (1931) Fr. Patent 729:952; Lefort TE (1935) US Patent 1:998

  4. Pu T, Tian H, Ford ME, Rangarajan S, Wachs IE (2019) Overview of selective oxidation of ethylene to ethylene oxide by Ag catalysts. ACS Catal 12(9):10727–10750

    Google Scholar 

  5. Ozbek MO, Onal I, Van Santen RA (2011) Why silver is the unique catalyst for ethylene epoxidation. J Catal 284(2):230–235

    CAS  Google Scholar 

  6. Jankowiak JT, Barteau MA (2005) Ethylene epoxidation over silver and copper-silver bimetallic catalysts: I. Kinetics and selectivity. J Catal 236(2):366–378

    CAS  Google Scholar 

  7. Greiner M et al (2018) Phase coexistence of multiple copper oxides on AgCu catalysts during ethylene epoxidation. ACS Catal 8(3):2286–2295

    CAS  Google Scholar 

  8. Zhan T, Zhang Y, Liu X, Lu S, Hou W (2016) NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. J Power Sources 333:53–60

    CAS  Google Scholar 

  9. Pendashteh A, Palma J, Anderson M, Marcilla R (2017) NiCoMnO4 nanoparticles on N-doped graphene: Highly efficient bifunctional electrocatalyst for oxygen reduction/evolution reactions. Appl Catal B 201:241–252

    CAS  Google Scholar 

  10. Xiong H, Jewell LL, Coville NJ (2015) Shaped carbons as supports for the catalytic conversion of syngas to clean fuels. ACS Catal 5(4):2640–2658

    CAS  Google Scholar 

  11. Cheng Y, Lin J, Xu K, Wang H, Yao X, Pei Y, Yan S, Qiao M, Zong B (2016) Fischer−Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts. ACS Catal 6(1):389–399

    CAS  Google Scholar 

  12. Low J, Yu J, Ho W (2015) Graphene-based photocatalysts for CO2 reduction to solar fuel. J Phys Chem Lett 6(21):4244–4251

    CAS  PubMed  Google Scholar 

  13. Li F, Zhang L, Tong J, Liu Y, Xu S, Cao Y, Cao S (2016) Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor. Nano Energy 27:320–329

    CAS  Google Scholar 

  14. Geng J, Kuai L, Kan E, Sang Y, Geng B (2016) Hydrothermal synthesis of a rGO nanosheet enwrapped NiFe nanoalloy for superior electrocatalytic oxygen evolution reactions. Chemistry A 22(41):14480–14483

    CAS  Google Scholar 

  15. Mateo D, Esteve-Adell I, Albero J, Primo A, García H (2017) Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Appl Catal B 201:582–590

    CAS  Google Scholar 

  16. Chen F, Surkus AE, He L, Pohl MM, Radnik J, Topf C, Junge K, Beller M (2015) Selective catalytic hydrogenation of heteroarenes with N-graphene-modified cobalt nanoparticles (Co3O4-Co/NGratα-Al2O3). J Am Chem Soc 137(36):11718–11724

    CAS  PubMed  Google Scholar 

  17. Nie R, Miao M, Du W, Shi J, Liu Y, Hou Z (2016) Selective hydrogenation of CC bond over N-doped reduced graphene oxides supported Pd catalyst. Appl Catal B 180:607–613

    CAS  Google Scholar 

  18. Zheng J, Duan X, Lin H, Gu Z, Fang H, Li J, Yuan Y (2016) Silver nanoparticles confined in carbon nanotubes: on the understanding of the confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate. Nanoscale 8(11):5959–5967

    CAS  PubMed  Google Scholar 

  19. Lu X, Song C, Jia S, Tong Z, Tang X, Teng Y (2015) Low- temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2-graphene. Chem Eng J 260:776–784

    CAS  Google Scholar 

  20. Xiao X, Sheng Z, Yang L, Dong F (2016) Low-temperature selective catalytic reduction of NOx with NH3 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method. Catal Sci Technol 6(5):1507–1514

    CAS  Google Scholar 

  21. Trapalis A, Todorova N, Giannakopoulou T, Boukos N, Speliotis T, Dimotikali D, Yu J (2016) TiO2/graphene composite photocatalysts for NOx removal: a comparison of surfactant-stabilized graphene and reduced graphene oxide. Appl Catal B 180:637–647

    CAS  Google Scholar 

  22. Hu M, Yao Z, Hui KN, Hui KS (2017) Novel mechanistic view of catalytic ozonation of gaseous toluene by dual-site kinetic modelling. Chem Eng J 308:710–718

    CAS  Google Scholar 

  23. Hu M, Hui KS, Hui KN (2014) Role of graphene in MnO2/graphene composite for catalytic ozonation of gaseous toluene. Chem Eng J 254:237–244

    CAS  Google Scholar 

  24. Chavez-Sumarriva I, Van Steenberge PHM, D’Hooge DR (2016) New insights in the treatment of waste water with graphene: dual-site adsorption by sodium dodecylbenzenesulfonate. Ind Eng Chem Res 55(35):9387–9396

    CAS  Google Scholar 

  25. Ramakrishnan S, Karuppannan M, Vinothkannan M, Ramachandran K, Joong Kwon O, Jin Yoo D (2019) Ultrafine Pt nanoparticles stabilized by MoS2/N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions. ACS Appl Mater Interfaces 11:12504–12515

    CAS  PubMed  Google Scholar 

  26. Hu M, Yao Z, Wang X (2017) Graphene-based nanomaterials for catalysis. Ind Eng Chem Res 56(13):3477–3502

    CAS  Google Scholar 

  27. Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5(10):8848

    CAS  Google Scholar 

  28. Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5(1):38–51

    CAS  PubMed  Google Scholar 

  29. Meng HB, Zhang XF, Pu YL, Chen XL, Feng JJ, Han DM, Wang AJ (2019) One-pot solvothermal synthesis of reduced graphene oxide-supported uniform PtCo nanocrystals for efficient and robust electrocatalysis. J Colloid Interface Sci 543:17–24

    CAS  PubMed  Google Scholar 

  30. Shi YC, Feng JJ, Lin Pu XX, Zhang L, Yuan J, Zhang QL, Wang AJ (2019) One-step hydrothermal synthesis of three-dimensional nitrogen-doped reduced graphene oxide hydrogels anchored ptpd alloyed nanoparticles for ethylene glycol oxidation and hydrogen evolution reactions. Electrochim Acta 293:504–513

    CAS  Google Scholar 

  31. Chen HY, Niu HJ, Ma X, Feng JJ, Weng X, Huang H, Wang AJ (2020) Flower-like platinum-cobalt-ruthenium alloy nanoassemblies as robust and highly efficient electrocatalyst for hydrogen evolution reaction. J Colloid Interface Sci 561:372–378

    CAS  PubMed  Google Scholar 

  32. Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X (2016) Catalysis with two-dimensional materials and their heterostructures. Nat Nanotechnol 11(3):218–230

    CAS  PubMed  Google Scholar 

  33. Cheng Y, Zhao Q, Li Y, Peng W, Zhang G, Zhang F, Fan X (2016) Gold nanoparticles supported on layered TiO2-RGO hybrid as an enhanced and recyclable catalyst for microwave-assisted hydration reaction. RSC Adv 6(80):76151–76157

    CAS  Google Scholar 

  34. Dey A, Athar J, Varma P, Prasant H, Sikder AK, Chattopadhyay S (2015) Graphene-iron oxide nanocomposite (GINC): An efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant. RSC Adv 5(3):1950–1960

    CAS  Google Scholar 

  35. Bai S, Shen X (2012) Graphene–inorganic nanocomposites. RSC Adv 2(1):64–98

    CAS  Google Scholar 

  36. Zhang N, Zhang Y, Xu YJ (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4(19):5792–5813

    CAS  PubMed  Google Scholar 

  37. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon N Y 64:225–229

    CAS  Google Scholar 

  38. Zhang G, Wen M, Wang S, Chen J, Wang J (2018) Insights into thermal reduction of the oxidized graphite from the electro-oxidation processing of nuclear graphite matrix. RSC Adv 567(8):567–572

    Google Scholar 

  39. Amorim de Carvalho MCN, Passos FB, Schmal M (2007) Study of the active phase of silver catalysts for ethylene epoxidation. J Catal 248(1):124–129

    CAS  Google Scholar 

  40. Zhang RL, Duan JJ, Han Z, Feng JJ, Huang H, Zhang QL, Wang AJ (2020) One-step aqueous synthesis of hierarchically multi-branched PdRuCu nanoassemblies with highly boosted catalytic activity for ethanol and ethylene glycol oxidation reactions. Appl Surf Sci 506:144791

    Google Scholar 

  41. Miller TS, Jorge AB, Suter TM, Sella A, Cora F, McMillan PF (2017) Carbon nitrides: synthesis and characterization of a new class of functional materials. Phys Chem Chem Phys 19:15613–15638

    CAS  PubMed  Google Scholar 

  42. Dehghanzad B, Aghjeh MKR, Rafeie O, Tavakolic A, Oskooieab AJ (2016) Synthesis and characterization of graphene and functionalized graphene via chemical and thermal treatment methods. RSC Adv 6:3578–3585

    CAS  Google Scholar 

  43. Abdolhosseinzadeh S, Asgharzadeh H, Kim HS (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5(1):1–7

    Google Scholar 

  44. Condon JB (2006) Surface area and porosity determinations by physisorption. Elsevier Science, Amsterdam1

    Google Scholar 

  45. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    CAS  Google Scholar 

  46. Zhao Y, Song X, Song Q, Yin Z (2012) A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm 14(20):6710

    CAS  Google Scholar 

  47. Kumar A et al (2017) Greener route for synthesis of aryl and alkyl-14H-dibenzo [a.j] xanthenes using graphene oxide-copper ferrite nanocomposite as a recyclable heterogeneous catalyst. Sci Rep 7:1–18

    Google Scholar 

  48. Zheng X et al (2012) Epoxidation of propylene by molecular oxygen over supported Ag-Cu bimetallic catalysts with low Ag loading. J Mol Catal A 357:106–111

    CAS  Google Scholar 

  49. Xu C, Shi X, Ji A, Shi L, Zhou C, Cui Y (2015) Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS ONE 10(12):1–15

    Google Scholar 

  50. Ganguly A et al (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115(34):17009–17019

    CAS  Google Scholar 

  51. Bukhtiyarov VI, Nizovskii AI, Bluhm H, Hävecker M, Kleimenov E, Knop-Gericke A, Schlögl R (2006) Combined in situ XPS and PTRMS study of ethylene epoxidation over silver. J Catal 238(2):260–269

    CAS  Google Scholar 

  52. Goncharova SN, Paukshtis EA, Bal’zhinimaevoncharova BS (1995) Size effects in ethylene oxidation on silver catalysts: influence of support and Cs promoter. Appl Catal A 126(1):67–84

    CAS  Google Scholar 

  53. Tsybula SV, Kryukova GN, Goncharova SN, Shmakov AN, Bal’zhinimaevoncharova BS (1995) Study of the real structure of silver supported catalysts of different dispersity. J Catal 154(2):194–200

    Google Scholar 

  54. Force EL, Bell AT (1975) Infrared spectra of adsorbed species present during the oxidation of ethylene over silver. J Catal 38(1):440–460

    CAS  Google Scholar 

  55. Force EL, Bell AT (1975) The relationship of adsorbed species observed by infrared spectroscopy to the mechanism of ethylene oxidation over silver. J Catal 40(3):356–371

    CAS  Google Scholar 

  56. Kilty PA, Sachtler WMH (1974) The mechanism of the selective oxidation of ethylene to ethylene oxide. Catal Rev Sci Eng 10:1–16

    CAS  Google Scholar 

  57. Alpert NL, Keiser WE, Szymanski HA (1970) The use of characteristic group frequencies in structural analysis, 1st edn. Springer, New York1

    Google Scholar 

  58. Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, Reddy ALM, Ajayan PM (2012) Controlled, stepwise reduction and band gap manipulation of graphene oxide. J Phys Chem Lett 3(8):986–991

    CAS  PubMed  Google Scholar 

  59. Kokalj A, Gava P, Gironcoli S, Baroni S (2008) What determines the catalyst's selectivity in the ethylene epoxidation reaction. J Catal 254(2):304–309

    CAS  Google Scholar 

  60. Cremer PS, Stanners C, Niemantsverdriet JW, Shen YR, Somorjai G (1995) The conversion of di-σ bonded ethylene to ethylidyne on Pt(111) monitored with sum frequency generation: evidence for an ethylidene (or ethyl) intermediate. Surf Sci 328(1):111–118

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge FAPERJ for scholarships; Surface Chemistry Laboratory—LAQUIS (IQ/UFRJ) for the XPS analysis; Characterization Center in Nanotechnology for Materials and Catalysis (CENANO/INT) for the SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schmal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Oliveira, M.R., Rabelo, J., Veiga, A.G. et al. In Situ DRIFTS Investigation of Ethylene Oxidation on Ag and Ag/Cu on Reduced Graphene Oxide. Catal Lett 150, 3036–3048 (2020). https://doi.org/10.1007/s10562-020-03208-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03208-w

Keywords

Navigation