Skip to main content
Log in

A Synergic Activity of Urea/Butyl Imidazolium Ionic Liquid Supported on UiO-66-NH2 Metal–Organic Framework for Synthesis of Oximes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An efficient supported ionic liquid catalyst is designed for condensation reaction of aldehydes and ketones. The Zr-based metal–organic framework (MOF), UiO-66-NH2, was initially functionalized with N,N′-dibutyl imidazolium ionic liquid (UiO-66-NH2-ILBr), and then urea was attached to the ionic liquid (IL) to form a task-specific IL. Bromide was exchanged with tetrafluoroborate and the catalyst exhibits excellent performance for the synthesis of oximes. The ionic liquid/urea coupling showed a synergistic effect on the efficiency of the reaction. The supported catalyst system was recycled simply by filtration and reused for five times without significant decrease in its activity. The catalyst was characterized with PXRD, FTIR, TGA, XPS, BET, FE-SEM, EDS, elemental mapping and elemental analysis (CHN).

Graphic Abstract

MOF/IL/urea catalytic system was used for the synthesis of oximes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campisciano V, Giacalone F, Gruttadauria M (2017) Supported ionic liquids: a versatile and useful class of materials. Chem Rec 17:918–938

    CAS  PubMed  Google Scholar 

  2. Romanovsky BV, Tarkhanova IG (2017) Supported ionic liquids in catalysis. Russ Chem Rev 86:444–458

    CAS  Google Scholar 

  3. Riisager A, Jørgensen B, Wasserscheid P, Fehrmann R (2006) First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation. Chem Commun 9:994–996

    Google Scholar 

  4. Joni J, Haumann M, Wasserscheid P (2009) Development of a supported ionic liquid phase (SILP) catalyst for slurry-phase Friedel-Crafts alkylations of cumene. Adv Synth Catal 351:423–431

    CAS  Google Scholar 

  5. Lemus J, Palomar J, Gilarranz MA, Rodriguez JJ (2011) Characterization of supported ionic liquid phase (SILP) materials prepared from different supports. Adsorption 17:561–571

    CAS  Google Scholar 

  6. More S, Jadhav S, Salunkhe R, Kumbhar A (2017) Palladium supported ionic liquid phase catalyst (Pd@SILP-PS) for room temperature Suzuki-Miyaura cross-coupling reaction. Mol Catal 442:126–132

    CAS  Google Scholar 

  7. Xin B, Hao J (2014) Imidazolium-based ionic liquids grafted on solid surfaces. Chem Soc Rev 43:7171–7187

    CAS  PubMed  Google Scholar 

  8. Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Supported ionic liquid phase (SILP) catalysis: An innovative concept for homogeneous catalysis in continuous fixed-bed reactors. Eur J Inorg Chem 2006:695–706

    Google Scholar 

  9. Zhang Q, Zhang S, Deng Y (2011) Recent advances in ionic liquid catalysis. Green Chem 13:2619–2637

    CAS  Google Scholar 

  10. Hagiwara H, Sekifuji M, Hoshi T, Qiao K, Yokoyama C (2007) Synthesis of bis(indolyl)methanes catalyzed by acidic ionic liquid immobilized on silica (ILIS). Synlett 2007:1320–1322

    Google Scholar 

  11. Gu Y, Li G (2009) Ionic liquids-based catalysis with solids: state of the art. Adv Synth Catal 351:817–847

    CAS  Google Scholar 

  12. Lee S-G (2006) Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem Commun 10:1049–1063

    Google Scholar 

  13. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl Catal A 373:1–56

    CAS  Google Scholar 

  14. Sawant AD, Raut DG, Darvatkar NB, Salunkhe MM (2011) Recent developments of task-specific ionic liquids in organic synthesis. Green Chem Lett Rev 4:41–54

    CAS  Google Scholar 

  15. Izák P, Bobbink FD, Hulla M, Klepic M, Friess K, Hovorka S, Dyson PJ (2018) Catalytic ionic-liquid membranes: the convergence of ionic-liquid catalysis and ionic-liquid membrane separation technologies. ChemPlusChem 83:7–18

    PubMed  Google Scholar 

  16. Mehnert CP (2005) Supported ionic liquid catalysis. Chem Eur J 11:50–56

    Google Scholar 

  17. Mehnert CP, Cook RA, Dispenziere NC, Afeworki M (2002) Supported ionic liquid catalysis—a new concept for homogeneous hydroformylation catalysis. J Am Chem Soc 124:12932–12933

    CAS  PubMed  Google Scholar 

  18. Li H, Bhadury PS, Song B, Yang S (2012) Immobilized functional ionic liquids: efficient, green, and reusable catalysts. RSC Adv 2:12525–12551

    CAS  Google Scholar 

  19. Luo Q-X, An B-W, Ji M, Zhang J (2018) Hybridization of metal–organic frameworks and task-specific ionic liquids: fundamentals and challenges. Mater Chem Front 2:219–234

    CAS  Google Scholar 

  20. Takashima Y, Yokoyama M, Horikoshi A, Sato Y, Tsuruoka T, Akamatsu K (2017) Ionic liquid/metal–organic framework hybrid generated by ion-exchange reaction: synthesis and unique catalytic activity. New J Chem 41:14409–14413

    CAS  Google Scholar 

  21. Farrusseng D, Aguado S, Pinel C (2009) Metal–organic frameworks: Opportunities for catalysis. Angew Chem Int Ed 48:7502–7513

    CAS  Google Scholar 

  22. He H, Perman JA, Zhu G, Ma S (2016) Metal-organic frameworks for CO2 chemical transformations. Small 12:6309–6324

    CAS  PubMed  Google Scholar 

  23. Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang H-L (2019) Metal–organic frameworks: structures and functional applications. Mater Today 27:43–68

    CAS  Google Scholar 

  24. Luo Q-X, Ji M, Lu M-H, Hao C, Qiu J-S, Li Y-Q (2013) Organic electron-rich N-heterocyclic compound as a chemical bridge: building a Brönsted acidic ionic liquid confined in MIL-101 nanocages. J Mater Chem A 1:6530–6534

    CAS  Google Scholar 

  25. Luo Q-X, Ji M, Park S-E, Hao C, Li Y-Q (2016) PdCl2 immobilized on metal–organic framework CuBTC with the aid of ionic liquids: enhanced catalytic performance in selective oxidation of cyclohexene. RSC Adv 6:33048–33054

    CAS  Google Scholar 

  26. Abednatanzi S, Leus K, Gohari Derakhshandeh P, Nahra F, De Keukeleere K, Van Hecke K, Van Driessche I, Abbasi A, Nolan SP, Van Der Voort P (2017) POM@IL-MOFs—inclusion of POMs in ionic liquid modified MOFs to produce recyclable oxidation catalysts. Catal Sci Technol 7:1478–1487

    CAS  Google Scholar 

  27. Abednatanzi S, Abbasi A, Masteri-Farahani M (2017) Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100(Fe): a recyclable catalyst for selective oxidation of benzyl alcohol. Catal Commun 96:6–10

    CAS  Google Scholar 

  28. Khan NA, Hasan Z, Jhung SH (2014) Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization. Chem Eur J 20:376–380

    CAS  PubMed  Google Scholar 

  29. Wu J, Gao Y, Zhang W, Tan Y, Tang A, Men Y, Tang B (2015) Deep desulfurization by oxidation using an active ionic liquid-supported Zr metal–organic framework as catalyst. Appl Organometal Chem 29:96–100

    CAS  Google Scholar 

  30. Luo Q-X, Song X-D, Ji M, Park S-E, Hao C, Li Y-Q (2014) Molecular size- and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst. Appl Catal A 478:81–90

    CAS  Google Scholar 

  31. Tharun J, Bhin K-M, Roshan R, Kim DW, Kathalikkattil AC, Babu R, Ahn HY, Won YS, Park D-W (2016) Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chem 18:2479–2487

    CAS  Google Scholar 

  32. Ding L-G, Yao B-J, Jiang W-L, Li J-T, Fu Q-J, Li Y-A, Liu Z-H, Ma J-P, Dong Y-B (2017) Bifunctional imidazolium-based ionic liquid decorated UiO-67 type MOF for selective CO2 adsorption and catalytic property for CO2 cycloaddition with epoxides. Inorg Chem 56:2337–2344

    CAS  PubMed  Google Scholar 

  33. Ma D, Li B, Liu K, Zhang X, Zou W, Yang Y, Li G, Shi Z, Feng S (2015) Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. J Mater Chem A 3:23136–23142

    CAS  Google Scholar 

  34. Wu Z, Chen C, Wan H, Wang L, Li Z, Li B, Guo Q, Guan G (2016) Fabrication of magnetic NH2-MIL-88B (Fe) confined Brønsted ionic liquid as an efficient catalyst in biodiesel synthesis. Energy Fuels 30:10739–10746

    CAS  Google Scholar 

  35. Yang SH, Chang S (2001) Highly efficient and catalytic conversion of aldoximes to nitriles. Org Lett 3:4209–4211

    CAS  PubMed  Google Scholar 

  36. Park S, Choi Y-A, Han H, Yang SH, Chang S (2003) Rh-Catalyzed one-pot and practical transformation of aldoximes to amides. Chem Commun 15:1936–1937

    Google Scholar 

  37. Peng H-G, Xu L, Wu H, Zhang K, Wu P (2013) One-pot synthesis of benzamide over a robust tandem catalyst based on center radially fibrous silica encapsulated TS-1. Chem Commun 49:2709–2711

    CAS  Google Scholar 

  38. Klitgaard SK, Egeblad K, Mentzel UV, Popov AG, Jensen T, Taarning E, Nielsen IS, Christensen CH (2008) Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts. Green Chem 10:419–423

    CAS  Google Scholar 

  39. Hajipour AR, Mallakpour SE, Imanzadeh G (1999) A rapid and convenient synthesis of oximes in dry media under microwave irradiation. J Chem Res (S) 3:228–229

    Google Scholar 

  40. Hajipour AR, Mallakpour SE, Khoee S (2002) An easy and fast method for conversion of oximes to the corresponding carbonyl compounds under microwave irradiation. Synth Commun 32:9–15

    CAS  Google Scholar 

  41. Kukushkin VY, Pombeiro AJL (1999) Oxime and oximate metal complexes: unconventional synthesis and reactivity. Coord Chem Rev 181:147–175

    CAS  Google Scholar 

  42. Li J-T, Li X-L, Li T-S (2006) Synthesis of oximes under ultrasound irradiation. Ultrason Sonochem 13:200–202

    CAS  PubMed  Google Scholar 

  43. Sridhar M, Narsaiah C, Raveendra J, Reddy GK, Reddy MKK, Ramanaiah BC (2011) Efficient microwave-assisted synthesis of oximes from acetohydroxamic acid and carbonyl compounds using BF3·OEt2 as the catalyst. Tetrahedron Lett 52:4701–4704

    CAS  Google Scholar 

  44. Sha Q, Wei Y (2013) Base and solvent mediated decomposition of tosylhydrazones: highly selective synthesis of N-alkyl substituted hydrazones, dialkylidenehydrazines, and oximes. Tetrahedron 69:3829–3835

    CAS  Google Scholar 

  45. Yu J, Lu M (2015) Copper(II)-promoted direct conversion of methylarenes into aromatic oximes. Org Biomol Chem 13:7397–7401

    CAS  PubMed  Google Scholar 

  46. Yu J, Jin Y, Lu M (2015) 3-Methyl-4-oxa-5-azahomoadamantane as an organocatalyst for the aerobic oxidation of primary amines to oximes in water. Adv Synth Catal 357:1175–1180

    CAS  Google Scholar 

  47. Xue X, Song F, Ma B, Yu Y, Li C, Ding Y (2013) Selective ammoximation of ketones and aldehydes catalyzed by a trivanadium-substituted polyoxometalate with H2O2 and ammonia. Catal Commun 33:61–65

    CAS  Google Scholar 

  48. Xing S, Han Q, Shi Z, Wang S, Yang PP, Wu Q, Li M (2017) A hydrophilic inorganic framework based on a sandwich polyoxometalate: unusual chemoselectivity for aldehydes/ketones with in situ generated hydroxylamine. Dalton Trans 46:11537–11541

    CAS  PubMed  Google Scholar 

  49. Hyodo K, Togashi K, Oishi N, Hasegawa G, Uchida K (2016) Brønsted acid catalyzed transoximation reaction: synthesis of aldoximes and ketoximes without use of hydroxylamine salts. Green Chem 18:5788–5793

    CAS  Google Scholar 

  50. Guo J-J, Jin T-S, Zhang S-L, Li T-S (2001) TiO2/SO42: an efficient and convenient catalyst for preparation of aromatic oximes. Green Chem 3:193–195

    CAS  Google Scholar 

  51. Sloboda-Rozner D, Neumann R (2006) Aqueous biphasic catalysis with polyoxometalates: oximation of ketones and aldehydes with aqueous ammonia and hydrogen peroxide. Green Chem 8:679–681

    CAS  Google Scholar 

  52. Kad GL, Bhandari M, Kaur J, Rathee R, Singh J (2001) Solventless preparation of oximes in the solid state and via microwave irradiation. Green Chem 3:275–277

    CAS  Google Scholar 

  53. Aakeröy CB, Sinha AS, Epa KN, Spartz CL, Desper J (2012) A versatile and green mechanochemical route for aldehyde–oxime conversions. Chem Commun 48:11289–11291

    Google Scholar 

  54. Ren RX, Ou W (2001) Preparation of cyclic ketoximes using aqueous hydroxylamine in ionic liquids. Tetrahedron Lett 42:8445–8446

    CAS  Google Scholar 

  55. Zang H, Wang M, Cheng B-W, Song J (2009) Ultrasound-promoted synthesis of oximes catalyzed by a basic ionic liquid [bmIm]OH. Ultrason Sonochem 16:301–303

    CAS  PubMed  Google Scholar 

  56. Hajipour AR, Rafiee F, Ruoho AE (2010) A rapid and convenient method for the synthesis of aldoximes under microwave irradiation using in situ generated ionic liquids. J Iran Chem Soc 7:114–118

    CAS  Google Scholar 

  57. Taylor MS, Jacobsen EN (2006) Asymmetric catalysis by chiral hydrogen-bond donors. Angew Chem Int Ed 45:1520–1543

    CAS  Google Scholar 

  58. Maheswara M, Siddaiah V, Gopalaiah K, Rao VM, Rao CV (2006) A simple and effective glycine-catalysed procedure for the preparation of oximes. J Chem Res 2006:362–363

    Google Scholar 

  59. Vitz J, Mac DH, Legoupy S (2007) Ionic liquid supported tin reagents for Stille cross coupling reactions. Green Chem 9:431–433

    CAS  Google Scholar 

  60. Zhang Y, Zhen B, Li H, Feng Y (2018) Basic ionic liquid as catalyst and surfactant: green synthesis of quinazolinone in aqueous media. RSC Adv 8:36769–36774

    CAS  Google Scholar 

  61. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater 22:6632–6640

    CAS  Google Scholar 

  62. Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun 49:9449–9451

    CAS  Google Scholar 

  63. Zhang L, Chen H, Zha Z, Wang Z (2012) Electrochemical tandem synthesis of oximes from alcohols using KNO3 as the nitrogen source, mediated by tin microspheres in aqueous medium. Chem Commun 28:6574–6576

    Google Scholar 

  64. Hinde CS, Webb WR, Chew BKJ, Tan HR, Zhang W-H, Hor TSA, Raja R (2016) Utilisation of gold nanoparticles on amine-functionalised UiO-66 (NH2-UiO-66) nanocrystals for selective tandem catalytic reactions. Chem Commun 52:6557–6560

    CAS  Google Scholar 

  65. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069

    CAS  Google Scholar 

  66. Sui Z-Y, Cui Y, Zhu J-H, Han B-H (2013) Preparation of three-dimensional graphene oxide−polyethylenimine porous materials as dye and gas adsorbents. ACS Appl Mater Interfaces 5:9172–9179

    CAS  PubMed  Google Scholar 

  67. Beattie DA, Arcifa A, Delcheva I, Le Cerf BA, MacWilliams SV, Rossi A, Krasowska M (2018) Adsorption of ionic liquids onto silver studied by XPS. Colloids Surf A 544:78–85

    CAS  Google Scholar 

  68. Li X, Sui Z-Y, Sun Y-N, Xiao P-W, Wang X-Y, Han B-H (2018) Polyaniline-derived hierarchically porous nitrogen-doped carbons as gas adsorbents for carbon dioxide uptake. Microporous Mesoporous Mater 257:85–91

    CAS  Google Scholar 

  69. Xiao P-W, Zhao L, Sui Z-Y, Han B-H (2017) Synthesis of core−shell structured porous nitrogen-doped carbon@silica material via a sol−gel method. Langmuir 33:6038–6045

    CAS  PubMed  Google Scholar 

  70. Gupta R, Yadav M, Gaur R, Arora G, Sharma RK (2017) A straightforward one-pot synthesis of bioactive N-aryl oxazolidin-2-ones via a highly efficient Fe3O4@SiO2-supported acetate-based butylimidazolium ionic liquid nanocatalyst under metal- and solvent-free conditions. Green Chem 19:3801–3812

    CAS  Google Scholar 

  71. Elmakssoudi A, Abdelouahdi K, Zahouily M, Clark J, Solhy A (2012) Efficient conversion of aldehydes and ketones into oximes using a nanostructured pyrophosphate catalyst in a solvent-free process. Catal Commun 29:53–57

    CAS  Google Scholar 

  72. Ribeiro TS, Prates A, Alves SR, Oliveira-Silva JJ, Riehl CAS, Figueroa-Villar JD (2012) The effect of neutral oximes on the reactivation of human acetylcholinesterase inhibited with paraoxon. J Braz Chem Soc 23:1216–1225

    CAS  Google Scholar 

  73. Van Doorslaer C, Wahlen J, Mertens P, Binnemans K, De Vos D (2010) Immobilization of molecular catalysts in supported ionic liquid phases. Dalton Trans 39:8377–8390

    PubMed  Google Scholar 

  74. Zhu A, Jiang T, Han B, Zhang J, Xie Y, Ma X (2007) Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chem 9:169–172

    CAS  Google Scholar 

  75. Corma A, García H, Llabrés i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655

    CAS  PubMed  Google Scholar 

  76. Chen J, Shen K, Li Y (2017) Greening the processes of metal–organic framework synthesis and their use in sustainable catalysis. Chemsuschem 10:3165–3187

    CAS  PubMed  Google Scholar 

  77. Khoramabadi-Zad A, Azadmanesh M, Rezaee A (2010) Simple, Efficient and green synthesis of oximes under ultrasound irradiation. S Afr J Chem 63:192–194

    Google Scholar 

Download references

Acknowledgements

M. Jafarzadeh is thankful to Razi University for the partial financial supports, and Prof. Kim Daasbjerg and Monica Rohde Madsen (Aarhus University, Denmark) for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jafarzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1705 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, S., Jafarzadeh, M., Christensen, D.B. et al. A Synergic Activity of Urea/Butyl Imidazolium Ionic Liquid Supported on UiO-66-NH2 Metal–Organic Framework for Synthesis of Oximes. Catal Lett 150, 3159–3173 (2020). https://doi.org/10.1007/s10562-020-03203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03203-1

Keywords

Navigation