Skip to main content
Log in

One-Pot Synthesis of Anthraquinone Catalyzed by Microwave Acetic Acid Modified Hβ Zeolite

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hβ zeolite is modified in the microwave acetic acid and evaluated in the one-pot synthesis of anthraquinone from benzene and phthalic anhydride. Under the optimized conditions, the Hβ zeolite modified in 0.9 mol/L acetic acid solution exhibits the best catalytic activity, in which the conversion of phthalic anhydride and its selectivity to anthraquinone are 54.71% and 62.56%, respectively. A series of catalysts are characterized using BET, XRD, XRF, NH3-TPD, FT-IR, Py-IR, SEM, and XPS. The high activity is mainly attributed to the suitable acid strength. Increasing the specific surface area and pore volume fraction also promotes the reaction. On the other hand, the deposition of carbon atoms results in the deactivation of the catalyst. However, the catalytic activity can be effectively recovered by calcination regeneration, and still shows good catalytic activity after five times.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Naeimi H, Namdari R (2009) Dyes Pigm 81:259–263

    Article  CAS  Google Scholar 

  2. Shrestha JP, Fosso MY, Bearss J et al (2014) Eur J Med Chem 77:96–102

    Article  CAS  Google Scholar 

  3. Liu J, Sun G (2008) Dyes Pigm 77:380–386

    Article  CAS  Google Scholar 

  4. Tietze LF, Gericke KM, Schuberth I (2007) Eur J Org Chem 2007:4563–4577

    Article  Google Scholar 

  5. Yavari I, Alborzi AR, Mohtat B (2006) Dyes Pigments 68:85–88

    Article  CAS  Google Scholar 

  6. Dufosse L (2014) Food Res Int 65:132–136

    Article  CAS  Google Scholar 

  7. Paananen M, Liitia T, Sixta H (2013) Ind Eng Chem Res 52:12777–12784

    Article  CAS  Google Scholar 

  8. Wang W, Xu W, Cosimbescu L et al (2012) Chem Commun 48:6669–6671

    Article  CAS  Google Scholar 

  9. Kholdeeva OA, Skobelev IY, Tvanchikova ID et al (2014) Catal Today 238:54–61

    Article  CAS  Google Scholar 

  10. Kosydar R, Drelinkiewicz A, Ganhy JP (2010) Catal Lett 139:105–113

    Article  CAS  Google Scholar 

  11. Ren MG, Mao M, Duan XY et al (2011) J Photochem Photobiol B 217:164–168

    Article  CAS  Google Scholar 

  12. Wilson NW, Pan YT, Shao YT (2018) ACS Catal 8:2880–2889

    Article  CAS  Google Scholar 

  13. Kim H, Choi Y, Hu S et al (2018) Appl Catal B 229:121–129

    Article  CAS  Google Scholar 

  14. Tsukamoto E, Ichikizaki T, Waki S, et al (1983) JP Patent 58034271, Feb 28, 1983

  15. Yokogawa S (1983) JP Patent 58028858, Feb 19, 1983

  16. Devic M (1983) US Patent 4379092, Apr 05, 1983

  17. Rodríguez F, Blanco MD, Adrados LF et al (1989) Tetrahedron Lett 30:2417–2420

    Article  Google Scholar 

  18. Clarke C, Tourney J, Johnson K (2012) J Hazard Mater 205–206:126–130

    Article  Google Scholar 

  19. Wang YG, Wei XY, Wang SK et al (2015) Fuel Process Technol 135:157–161

    Article  CAS  Google Scholar 

  20. Bordoloi A, Lefebvre F, Halligudi S (2007) J Catal 247:166–175

    Article  CAS  Google Scholar 

  21. Hou QJ, Zheng BM, Bi CG et al (2009) J Catal 268:376–383

    Article  CAS  Google Scholar 

  22. Xu R, Guo X, Wang G et al (2006) Catal Lett 107:149–154

    Article  CAS  Google Scholar 

  23. Tesser R, Serio MD, Ambrosio M et al (2002) Chem Eng J 90:195–201

    Article  CAS  Google Scholar 

  24. Wang Y, Miao WR, Liu Q et al (2002) Stud Surf Sci Catal 142:1007–1014

    Article  Google Scholar 

  25. Zhai L, Liu M, Dong X et al (2009) Chin J Catal 30:9–13

    Article  CAS  Google Scholar 

  26. Liu M, Yin Y, Guo X et al (2017) Ind Eng Chem Res 56:8850–8856

    Article  CAS  Google Scholar 

  27. Li Y, Yang W (2008) J Membr Sci 316:3–17

    Article  CAS  Google Scholar 

  28. Zhang ZK, Wang ZL (2010) J Nat Gas Chem 19:417–421

    Article  CAS  Google Scholar 

  29. Kanchana K, Aarthi N, Anu G, Poorni SK (0)

  30. Apelian MR, Fung AS (1996) J Phys Chem 100:16577–16583

    Article  CAS  Google Scholar 

  31. Juttu GG, Lobo RF (1999) Catal Lett 62:99–106

    Article  CAS  Google Scholar 

  32. Kiricsi I, Flego C, Pazzuconi G et al (1994) J Phys Chem 98:4627–4634

    Article  CAS  Google Scholar 

  33. Roseler J, Heitmann G, Holderich WF (1996) Appl Catal A 144:319–333

    Article  Google Scholar 

  34. Borade RB, Clearfield A (1994) Stud Surf Sci Catal 84:661–668

    Article  CAS  Google Scholar 

  35. Lopez-Fonseca R, Rivas BD, Gutierrez-Ortiz JI et al (2003) Appl Catal B Environ 41:31–42

    Article  CAS  Google Scholar 

  36. Ma D, Han XW, Xie SJ et al (2002) Chem 8:162–170

    Article  CAS  Google Scholar 

  37. Kim JH, Katada N, Igi H (1997) J Phys Chem B 101:5969–5977

    Google Scholar 

  38. Guimon C, Boreave A, Pfister-Guillouzo G (1994) Surf Interface Anal 22:407–411

    Article  CAS  Google Scholar 

  39. Bai GY, Yang YH, Ma Z et al (2012) Res Chem Intermed 38:795–806

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Key Research and Development Project of Shandong Province (2019GGX102021), the Taishan Scholars Projects of Shandong (ts201511033), the Shandong Provincial Natural Science Foundation Project (ZR2019MC030), and National Natural Science Foundation of China (21805158).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiwei Liu or Zhiping Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Yu, H., Bian, B. et al. One-Pot Synthesis of Anthraquinone Catalyzed by Microwave Acetic Acid Modified Hβ Zeolite. Catal Lett 150, 3007–3016 (2020). https://doi.org/10.1007/s10562-020-03201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03201-3

Keywords

Navigation