Skip to main content
Log in

Comparative Study of Homogeneous and Silica Immobilized N^N and N^O Palladium(II) Complexes as Catalysts for Hydrogenation of Alkenes, Alkynes and Functionalized Benzenes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work reports the use of homogeneous and silica immobilized palladium(II) complexes of ligands (2-phenyl-2-((3(triethoxysilyl)propyl)imino)ethanol) (L1), (4-methyl-2-((3(triethoxysilyl)propyl)imino)methyl)phenol) (L2), [L1-MCM-41] (L1im), and [L2-MCM-41] (L2im) as catalysts in molecular hydrogenation of alkenes, alkynes and functionalized benzenes. The homogeneous complexes [Pd(L1)2] (Pd1), [Pd(L2)2] (Pd2), [Pd(L1)(Cl2)] (Pd3), and [Pd(L2)(Cl2)] (Pd4), and their respective silica immobilized complexes [Pd(L1)2]-MCM-41] (Pd1im), [Pd(L2)2)-MCM-4] (Pd2im), [Pd (L1)(Cl2)-MCM-41] (Pd3im) and [Pd(L2)(Cl2)]-MCM-41] (Pd4im) formed active catalysts in the molecular hydrogenation of these substrates. The catalytic activities and product distribution in these reactions were largely dictated by the nature of the substrate. The kinetic studies revealed a pseudo-first order dependence on styrene substrate for both the homogeneous and immobilized catalysts. Significantly, the selectivity of both homogeneous and immobilized catalysts were comparable in the hydrogenation of both alkynes and multi-functionalized benzenes. The supported catalysts could be recycled up to four times with minimum loss of catalytic activity and showed absence of any leaching from hot filtration experiments. Kinetics and poisoning studies established that complexes Pd1Pd4 were largely homogeneous in nature, while the immobilized complexes Pd1imPd4im formed Pd(0) nanoparticles as the main active species.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blaser HU, Malan C, Pugin B, Spindler F, Steiner H, Studer M (2003) Selective hydrogenation for fine chemicals: recent trends and new developments. Adv Synth Catal 345:103–151

    CAS  Google Scholar 

  2. Dobrovolná Z, Kačer P, Červený L (1998) Competitive hydrogenation in alkene–alkyne–diene systems with palladium and platinum catalysts1. J Mol Catal A: Chem 130:279–284

    Google Scholar 

  3. Sohel SMA, Liu R-S (2009) Carbocyclisation of alkynes with external nucleophiles catalysed by gold, platinum and other electrophilic metals. Chem Soc Rev 38:2269–2281

    PubMed  Google Scholar 

  4. Abu-Reziq R, Wang D, Post M, Alper H (2007) Platinum nanoparticles supported on ionic liquid-modified magnetic nanoparticles: selective hydrogenation catalysts. Adv Synth Catal 349:2145–2150

    CAS  Google Scholar 

  5. Zhang Y, Liao S, Xu Y, Yu D (2000) Catalytic selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Appl Catal A 192:247–251

    CAS  Google Scholar 

  6. van Laren MW, Duin MA, Klerk C, Naglia M, Rogolino D, Pelagatti P, Bacchi A, Pelizzi C, Elsevier CJ (2002) Palladium(0) complexes with unsymmetric bidentate nitrogen ligands for the stereoselective hydrogenation of 1-phenyl-1-propyne to (Z)-1-phenyl-1-propene. Organometallics 21:1546–1553

    Google Scholar 

  7. Chan K-T, Tsai Y-H, Lin W-S, Wu J-R, Chen S-J, Liao F-X, Hu C-H, Lee HM (2009) Palladium complexes with carbene and phosphine ligands: synthesis, structural characterization, and direct arylation reactions between aryl halides and alkynes. Organometallics 29:463–472

    Google Scholar 

  8. Drago D, Pregosin PS (2002) Palladium−Duphos structural and enantioselective hydroarylation chemistry. Organometallics 21:1208–1215

    CAS  Google Scholar 

  9. Bacchi A, Carcelli M, Costa M, Leporati A, Leporati E, Pelagatti P, Pelizzi C, Pelizzi G (1997) Palladium(II) complexes containing a P, N chelating ligand Part II. Synthesis and characterisation of complexes with different hydrazinic ligands. Catalytic activity in the hydrogenation of double and triple CC bonds. J Organomet Chem 535:107–120

    CAS  Google Scholar 

  10. Bond GC (2005) Metal-catalysed reactions of hydrocarbons. Springer, Berlin

    Google Scholar 

  11. Blaser H, Siegrist U, Steiner H, Studer M (2001) Aromatic nitro compounds. In: Sheldon RA, van Bekkum H (eds) Fine chemicals through heterogeneous catalysis. Wiley, Weinheim, pp 389–406

    Google Scholar 

  12. Sharif MJ, Yamazoe S, Tsukuda T (2014) Selective hydrogenation of 4-nitrobenzaldehyde to 4-aminobenzaldehyde by colloidal RhCu bimetallic nanoparticles. Top Catal 57:1049–1053

    CAS  Google Scholar 

  13. Cao S, Xu S, Xu S (1999) Hydrogenation of nitroaromatics containing a carbonyl group catalyzed by the palladium complex of MgO-supported melamino–formaldehyde polymer. Polym Adv Technol 10:43–47

    CAS  Google Scholar 

  14. Li G, Zeng C, Jin R (2015) Chemoselective hydrogenation of nitrobenzaldehyde to nitrobenzyl alcohol with unsupported Au nanorod catalysts in water. J Phys Chem C 119:11143–11147

    CAS  Google Scholar 

  15. Currall K, Jackson SD (2014) Hydrogenation of 4-nitroacetophenone over Rh/silica. Appl Catal A-Gen 484:59–63

    CAS  Google Scholar 

  16. Hawkins JM, Makowski TW (2001) Optimizing selective partial hydrogenations of 4-nitroacetophenone via parallel reaction screening. Org Process Res Dev 5:328–330

    CAS  Google Scholar 

  17. Currall K, Jackson SD (2014) Hydrogenation of 4-nitroacetophenone over Rh/silica: understanding selective hydrogenation of multifunctional molecules. Top Catal 57:1519–1525

    CAS  Google Scholar 

  18. Cole-Hamilton DJ (2003) Homogeneous catalysis: new approaches to catalyst separation, recovery, and recycling. Science 299:1702–1706

    CAS  PubMed  Google Scholar 

  19. Goetheer EL, Verkerk AW, van den Broeke LJ, de Wolf E, Deelman B-J, van Koten G, Keurentjes JT (2003) Membrane reactor for homogeneous catalysis in supercritical carbon dioxide. J Catal 219:126–133

    CAS  Google Scholar 

  20. Jessop PG, Ikariya T, Noyori R (1999) Homogeneous catalysis in supercritical fluids. Chem Rev 99:475–494

    CAS  PubMed  Google Scholar 

  21. De Smet K, Aerts S, Ceulemans E, Vankelecom IF, Jacobs PA (2001) Nanofiltration-coupled catalysis to combine the advantages of homogeneous and heterogeneous catalysis. Chem Commun 7:597–598

    Google Scholar 

  22. Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694

    CAS  PubMed  Google Scholar 

  23. Davies IW, Matty L, Hughes DL, Reider PJ (2001) Are heterogeneous catalysts precursors to homogeneous catalysts? J Am Chem Soc 123:10139–10140

    CAS  PubMed  Google Scholar 

  24. de Bellefon C, Tanchoux N, Caravieilhes S (1998) New reactors and methods for the investigation of homogeneous catalysis. J Organomet Chem 567:143–150

    Google Scholar 

  25. Alexander S, Udayakumar V, Gayathri V (2009) Hydrogenation of olefins by polymer-bound palladium(II) Schiff base catalyst. J Mol Catal A: Chem 314:21–27

    CAS  Google Scholar 

  26. Brintzinger HH, Fischer D, Mülhaupt R, Rieger B, Waymouth RM (1995) Stereospecific olefin polymerization with chiral metallocene catalysts. Angew Chem Int Ed Engl 34:1143–1170

    CAS  Google Scholar 

  27. de Pater JJ, Deelman BJ, Elsevier CJ, van Koten G (2006) Multiphase systems for the recycling of alkoxycarbonylation catalysts. Adv Synth Catal 348:1447–1458

    Google Scholar 

  28. Wan B, Liao S, Yu D (1999) Polymer-supported palladium–manganese bimetallic catalyst for the oxidative carbonylation of amines to carbamate esters. Appl Catal A-Gen 183:81–84

    CAS  Google Scholar 

  29. Ishii H, Takeuchi K, Asai M, Ueda M (2001) Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd–pyridyl complexes tethered on polymer support. Catal Commun 2:145–150

    CAS  Google Scholar 

  30. Chen X, Zhu H, Wang T, Li C, Yan L, Jiang M, Liu J, Sun X, Jiang Z, Ding Y (2016) The 2V-P, N polymer supported palladium catalyst for methoxycarbonylation of acetylene. J Mol Catal A: Chem 414:37–46

    CAS  Google Scholar 

  31. Hronec M, Cvengrošová Z, Kralik M, Palma G, Corain B (1996) Hydrogenation of benzene to cyclohexene over polymer-supported ruthenium catalysts. J Mol Catal A: Chem 105:25–30

    CAS  Google Scholar 

  32. Chen Y, Qiu J, Wang X, Xiu J (2006) Preparation and application of highly dispersed gold nanoparticles supported on silica for catalytic hydrogenation of aromatic nitro compounds. J Catal 242:227–230

    CAS  Google Scholar 

  33. Huang W, Kuhn JN, Tsung C-K, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett 8:2027–2034

    CAS  PubMed  Google Scholar 

  34. Shore SG, Ding E, Park C, Keane MA (2002) Vapor phase hydrogenation of phenol over silica supported Pd and Pd/Yb catalysts. Catal Commun 3:77–84

    CAS  Google Scholar 

  35. Polshettiwar V, Baruwati B, Varma RS (2009) Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem 11:127–131

    CAS  Google Scholar 

  36. Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Recoverable rhodium nanoparticles: synthesis, characterization and catalytic performance in hydrogenation reactions. Appl Catal A 338:52–57

    CAS  Google Scholar 

  37. Kainz QM, Linhardt R, Grass RN, Vilé G, Pérez-Ramírez J, Stark WJ, Reiser O (2014) Palladium nanoparticles supported on magnetic carbon-coated cobalt nanobeads: highly active and recyclable catalysts for alkene hydrogenation. Adv Funct Mater 24:2020–2027

    CAS  Google Scholar 

  38. Schulz J, Roucoux A, Patin H (2000) Stabilized rhodium(0) nanoparticles: a reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system. Chem.: Eur. J 6:618–624

    CAS  Google Scholar 

  39. Plasseraud L, Süss-Fink G (1997) Catalytic hydrogenation of benzene derivatives under biphasic conditions. J Organomet Chem 539:163–170

    CAS  Google Scholar 

  40. Demmans K, Ko O, Morris R (2016) Aqueous biphasic iron-catalyzed asymmetric transfer hydrogenation of aromatic ketones. RSC Adv 6:88580–88587

    CAS  Google Scholar 

  41. Akiri SO, Ojwach SO (2019) Methoxycarbonylation of olefins catalysed by homogeneous palladium(II) complexes of (phenoxy) imine ligands bearing alkoxy silane groups. Inorg Chim Acta 489:236–243

    CAS  Google Scholar 

  42. Akiri SO, Ojwach SO (2019) Synthesis of MCM-41 immobilized (phenoxy) imine palladium(II) complexes as recyclable catalysts in the methoxycarbonylation of 1-hexene. Catalysts 9:143

    Google Scholar 

  43. Widegren JA, Finke RG (2003) A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. J Mol Catal A: Chem 198:317–341

    CAS  Google Scholar 

  44. Sonnenberg JF, Morris RH (2014) Distinguishing homogeneous from nanoparticle asymmetric iron catalysis. Catal Sci Technol 4:3426–3438

    CAS  Google Scholar 

  45. Gross E, Liu JH-C, Toste FD, Somorjai GA (2012) Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time. Nat Chem 4:947

    CAS  PubMed  Google Scholar 

  46. Hegedus LS (1999) Transition metals in the synthesis of complex organic molecules. University Science Books, Mill Valley

    Google Scholar 

  47. van Ravensteijn BG, Schild DJ, Kegel WK, Klein Gebbink RJ (2017) The Immobilization of a transfer hydrogenation catalyst on colloidal particles. ChemCatChem 9:440–450

    Google Scholar 

  48. Niu Y, Yeung LK, Crooks RM (2001) Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J Am Chem Soc 123:6840–6846

    CAS  Google Scholar 

  49. Abe H, Amii H, Uneyama K (2001) Pd-catalyzed asymmetric hydrogenation of α-fluorinated iminoesters in fluorinated alcohol: a new and catalytic enantioselective synthesis of fluoro α-amino acid derivatives. Org Lett 3:313–315

    CAS  PubMed  Google Scholar 

  50. Chen M-W, Duan Y, Chen Q-A, Wang D-S, Yu C-B, Zhou Y-G (2010) Enantioselective Pd-catalyzed hydrogenation of fluorinated imines: facile access to chiral fluorinated amines. Org Lett 12:5075–5077

    CAS  PubMed  Google Scholar 

  51. Wang Y-Q, Lu S-M, Zhou Y-G (2005) Palladium-catalyzed asymmetric hydrogenation of functionalized ketones. Org Lett 7:3235–3238

    CAS  PubMed  Google Scholar 

  52. Yılmaz F, Mutlu A, Ünver H, Kurtça M, Kani İ (2010) Hydrogenation of olefins catalyzed by Pd(II) complexes containing a perfluoroalkylated S, O-chelating ligand in supercritical CO2 and organic solvents. J Supercrit Fluid 54:202–209

    Google Scholar 

  53. Altinel H, Avsar G, Yilmaz M, Guzel B (2009) New perfluorinated rhodium–BINAP catalysts and hydrogenation of styrene in supercritical CO2. J Supercrit Fluid 51:202–208

    CAS  Google Scholar 

  54. Phua P-H, Lefort L, Boogers JA, Tristany M, de Vries JG (2009) Soluble iron nanoparticles as cheap and environmentally benign alkene and alkyne hydrogenation catalysts. Chem Commun 40:3747–3749

    Google Scholar 

  55. Harraz F, El-Hout S, Killa H, Ibrahim I (2012) Palladium nanoparticles stabilized by polyethylene glycol: efficient, recyclable catalyst for hydrogenation of styrene and nitrobenzene. J Catal 286:184–192

    CAS  Google Scholar 

  56. Pan Y, Ma D, Liu H, Wu H, He D, Li Y (2012) Uncoordinated carbonyl groups of MOFs as anchoring sites for the preparation of highly active Pd nano-catalysts. J Mater Chem 22:10834–10839

    CAS  Google Scholar 

  57. Lan Y, Zhang M, Zhang W, Yang L (2009) Enhanced Pd-catalyzed hydrogenation of olefins within polymeric microreactors under organic/aqueous biphasic conditions. Chem: Eur J 15:3670–3673

    CAS  Google Scholar 

  58. Gao S, Li W, Cao R (2015) Palladium–pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions. J Colloid Interface Sci 441:85–89

    CAS  PubMed  Google Scholar 

  59. Starks CM, Halper M (2012) Phase-transfer catalysis: fundamentals, applications, and industrial perspectives. Springer, Berlin

    Google Scholar 

  60. Ashton Acton Q (2013) Carboxylic acids: advances in research and application. Scholarly Editions, Atlanta

    Google Scholar 

  61. Rheinländer PJ, Herranz J, Durst J, Gasteiger HA (2014) Kinetics of the hydrogen oxidation/evolution reaction on polycrystalline platinum in alkaline electrolyte reaction order with respect to hydrogen pressure. J Electrochem Soc 161:F1448–F1457

    Google Scholar 

  62. Kim MH, Lee EK, Jun JH, Kong SJ, Han GY, Lee BK, Lee T-J, Yoon KJ (2004) Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study. Int J Hydrogen Energy 29:187–193

    CAS  Google Scholar 

  63. Díaz E, Mohedano A, Calvo L, Gilarranz M, Casas J, Rodríguez J (2007) Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chem Eng J 131:65–71

    Google Scholar 

  64. Borodziński A, Bond GC (2006) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal Rev 48:91–144

    Google Scholar 

  65. Semagina N, Joannet E, Parra S, Sulman E, Renken A, Kiwi-Minsker L (2005) Palladium nanoparticles stabilized in block-copolymer micelles for highly selective 2-butyne-1, 4-diol partial hydrogenation. Appl Catal A-Gen 280:141–147

    CAS  Google Scholar 

  66. Mei Y, Sharma G, Lu Y, Ballauff M, Drechsler M, Irrgang T, Kempe R (2005) High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 21:12229–12234

    CAS  PubMed  Google Scholar 

  67. Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core−shell microgels. Chem Mater 19:1062–1069

    CAS  Google Scholar 

  68. Pruvost R, Boulanger J, Léger B, Ponchel A, Monflier E, Ibert M, Mortreux A, Chenal T, Sauthier M (2014) Synthesis of 1,4:3,6-dianhydrohexitols diesters from the palladium-catalyzed hydroesterification reaction. Chemsuschem 7:3157–3163

    CAS  PubMed  Google Scholar 

  69. Chadwick JC, Duchateau R, Freixa Z, Van Leeuwen PW (2011) Homogeneous catalysts: activity-stability-deactivation. Wiley, Weinheim

    Google Scholar 

  70. Jackson SD, Shaw LA (1996) The liquid-phase hydrogenation of phenyl acetylene and styrene on a palladium/carbon catalyst. Appl Catal A-Gen 134:91–99

    CAS  Google Scholar 

  71. Peres CM, Agathos SN (2000) Biodegradation of nitroaromatic pollutants: from pathways to remediation. Biotechnol Annu Rev 6:197–220

    CAS  PubMed  Google Scholar 

  72. Spain JC, Hughes JB, Knackmuss H-J (2000) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton

    Google Scholar 

  73. Ram S, Ehrenkaufer RE (1984) A general procedure for mild and rapid reduction of aliphatic and aromatic nitro compounds using ammonium formate as a catalytic hydrogen transfer agent. Tetrahedron Lett 25:3415–3418

    CAS  Google Scholar 

  74. Ganguli K, Shee S, Panja D, Kundu S (2019) Cooperative Mn(I)-complex catalyzed transfer hydrogenation of ketones and imines. Dalton Trans

  75. Watson AJ, Fairbanks AJ (2013) Ruthenium-catalyzed transfer hydrogenation of amino-and amido-substituted acetophenones. Eur J Org Chem 2013:6784–6788

    CAS  Google Scholar 

  76. Li K, Zhu X, Lu S, Zhou X-Y, Xu Y, Hao X-Q, Song M-P (2016) Catalyst-free Friedel-Crafts alkylation of imidazo [1, 2-α] pyridines. Synlett 27:387–390

    CAS  Google Scholar 

  77. Ziccarelli I, Neumann H, Kreyenschulte C, Gabriele B, Beller M (2016) Pd-Supported on N-doped carbon: improved heterogeneous catalyst for base-free alkoxycarbonylation of aryl iodides. Chem Commun 52:12729–12732

    CAS  Google Scholar 

  78. Crabtree RH (2011) Resolving heterogeneity problems and impurity artifacts in operationally homogeneous transition metal catalysts. Chem Rev 112:1536–1554

    PubMed  Google Scholar 

  79. Lin Y, Finke RG (1994) A more general approach to distinguishing" homogeneous" from" heterogeneous" catalysis: discovery of polyoxoanion-and Bu4N+-stabilized, isolable and redissolvable, high-reactivity Ir. apprx. 190–450 nanocluster catalysts. Inorg Chem 33:4891–4910

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen O. Ojwach.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akiri, S.O., Ngcobo, N.L. & Ojwach, S.O. Comparative Study of Homogeneous and Silica Immobilized N^N and N^O Palladium(II) Complexes as Catalysts for Hydrogenation of Alkenes, Alkynes and Functionalized Benzenes. Catal Lett 150, 2850–2862 (2020). https://doi.org/10.1007/s10562-020-03192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03192-1

Keywords

Navigation