Skip to main content
Log in

Acidic–Basic Bifunctional Magnetic Mesoporous CoFe2O4@(CaO–ZnO) for the Synthesis of Glycerol Carbonate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Magnetic mesoporous CoFe2O4@(CaO–ZnO) exhibited good catalytic activity in the transesterification of glycerol and dimethyl carbonate to yield glycerol carbonate. The glycerol conversion of 97.7% and glycerol carbonate yield of 96.9% could be obtained in this reaction system under the optimized reaction conditions. CoFe2O4@(CaO–ZnO) was characterized by a series of techniques including TPD, XRD, SEM, TEM, EDS, VSM and BET to evaluate the physico-chemical properties of the catalyst. It was demonstrated that the interaction of acid–base sites improved the catalysis performance of CoFe2O4@(CaO–ZnO): the strong basic sites were beneficial to the activation of glycerol to glyceroxide anion which could increase glycerol conversion, and the acid site contributes to the carbonyl activation of dimethyl carbonate, converts glyceroxide anion to glycerol carbonate, and improves the selectivity of glycerol carbonate. Meanwhile, the solid–liquid separation process after reaction would be simplified significantly considering CoFe2O4@(CaO–ZnO) could be easily separated from the reaction mixture under magnetic action.

Graphic Abstract

Acidic–basic bifunctional magnetic mesoporous CoFe2O4@(CaO–ZnO) was used as a solid base catalyst for the glycerol transesterification. Basic sites were beneficial to the activation of glycerol to glycerol oxygen anion to increase glycerol conversion and acidic sites were beneficial to carbonyl activation of DMC to increase glycerol carbonate selectivity. With magnetism, the solid base catalyst was easily recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Steven C, Arun M (2012) Nature 488:294–303

    Article  Google Scholar 

  2. Shan R, Lu LL, Shi YY, Yuan HR, Shi JF (2018) Energy Covers Manag 178:277–289

    Article  CAS  Google Scholar 

  3. Prashant VK (2007) J Phys Chem C 111:2834–2860

    Article  Google Scholar 

  4. Jassinnee M, Hwai CO, Masjuki HH, Silitonga AS, Chen W, Kusumo F, Dharma S, Sebayang AH (2018) Energy Convers Manag 158:400–415

    Article  Google Scholar 

  5. Chang JM, Guan XY, Pan SY, Jia ML, Chen Y, Fan HJ (2018) New J Chem 42:13074–13080

    Article  CAS  Google Scholar 

  6. Norhasyimi R, Ahmad ZA, Abdul RM (2010) Renew Sustain Energy Rev 14:987–1000

    Article  Google Scholar 

  7. Chun-Hui CZ, Jorge NB, Fan YX, Lu GQM (2008) Chem Soc Rev 37:527–549

    Article  Google Scholar 

  8. Lozano FJ, Lozano R (2018) J Clean Prod 172:4162–4169

    Article  CAS  Google Scholar 

  9. Zhang JG, Loris L, Gökalp G, Paul JD, Yan N (2018) Chin J Catal 39:1445–1452

    Article  CAS  Google Scholar 

  10. Mario P, Rosaria C, Hiroshi K, Michele R, Cristina DP (2007) Angew Chem Int Ed 46:4434–4440

    Article  Google Scholar 

  11. Georgios D, Stefan S, Harun T (2018) ACS Catal 8:6301–6333

    Article  Google Scholar 

  12. Teng WK, Gek CN, Rozita Y, Mohamed KA (2014) Energy Convers Manag 88:484–497

    Article  CAS  Google Scholar 

  13. Christy S, Noschese A, Lomelí-Rodriguez M, Greeves N, Lopez-Sanchez JA (2018) Curr Opin Green Sustain Chem 14:99–107

    Article  Google Scholar 

  14. Liu P, Derchi M, Hensen EJM (2013) Appl Catal A 467:124–131

    Article  CAS  Google Scholar 

  15. Huy N-P, Eun WS (2018) Appl Catal A 561:28–40

    Article  Google Scholar 

  16. Chaves DM, Silva MJ (2019) New J Chem 43:3698–3706

    Article  CAS  Google Scholar 

  17. Castro-Osma JA, Lamb KJ, North M (2016) ACS Catal 6:5012–5025

    Article  CAS  Google Scholar 

  18. Wu YF, Song XH, Zhang JH, Li S, Yang XH, Wang HZ, Wei RP, Gao LJ, Zhang J, Xiao GM (2018) J Taiwan Inst Chem E 87:131–139

    Article  CAS  Google Scholar 

  19. Zhou HX, Wang BW, Wang SP, Huang SY, Ma XB (2018) Chem Lett 47:1075–1078

    Article  CAS  Google Scholar 

  20. Matthieu OS, Sonia A, Elisabeth PTG, Thierry D, Olivier C, Frederic G (2013) Green Chem 15:283–306

    Article  Google Scholar 

  21. Khayoon MS, Hameed BH (2013) Appl Catal A 466:272–281

    Article  CAS  Google Scholar 

  22. Song XH, Wu YF, Cai FF, Pan DH, Xiao GM (2017) Appl Catal A 532:77–85

    Article  CAS  Google Scholar 

  23. Liu P, Margherita D, Emiel JMH (2014) Appl Catal B 144:135–143

    Article  Google Scholar 

  24. Chiappe C, Rajamani S (2011) Pure Appl Chem 84:755–762

    Article  Google Scholar 

  25. Sang CK, Yong HK, Hyuk L (2007) J Mol Catal B 49:75–78

    Article  Google Scholar 

  26. Okoye PU, Abdullah AZ, Hameed BH (2016) J Taiwan Inst Chem Eng 68:51–58

    Article  CAS  Google Scholar 

  27. Doyle AM, Alismaeel ZT, Albayati TM, Abbas AS (2017) Fuel 199:394–402

    Article  CAS  Google Scholar 

  28. Shibasaki-Kitakawa N, Hiromori K, Ihara T, Nakashima K, Yonemoto T (2015) Fuel 139:11–17

    Article  CAS  Google Scholar 

  29. Fidelis SHS, Tae KK, Sang DL (2011) Appl Catal A 401:220–225

    Article  Google Scholar 

  30. Sasipim L, Thikumporn N, Kunchana B, Chawalit N (2013) Chem Eng J 225:616–624

    Article  Google Scholar 

  31. Yu XH, Wen ZZ, Li HL, Tu ST, Yan JY (2011) Fuel 90:1868–1874

    Article  CAS  Google Scholar 

  32. Yun HTY, Siow HT, Umer R, Aminul I, Mohd ZH, Keat TL (2014) Energy Convers Manag 88:1290–1296

    Article  Google Scholar 

  33. Xie WL, Zhao LL (2013) Energy Convers Manag 76:55–62

    Article  CAS  Google Scholar 

  34. Ana CAR, José SG, Josefa MMR, Ramón MT, David MA, Atonio JL, Pedro MT (2010) Catal Today 149:281–287

    Article  Google Scholar 

  35. Xu Y, Wei J, Yao JL, Fu JL, Xue DS (2008) Mater Lett 62:1403–1405

    Article  CAS  Google Scholar 

  36. Liu LH, Fan MM, Zhang PB, Jiang PP (2015) Fenxi Shiyanshi 34:1339–1342

    CAS  Google Scholar 

  37. Zheng LP, Xia SX, Lu XY (2015) Chin J Catal 36:1759–1765

    Article  CAS  Google Scholar 

  38. Meng YL, Wang BY, Li SF, Tian SJ, Zhang MH (2013) Bioresour Technol 128:305–309

    Article  CAS  Google Scholar 

  39. Wu YF, Song XH, Cai FF (2017) J Alloys Compd 720:360–368

    Article  CAS  Google Scholar 

  40. José ROG, Olga GJA, Belén MM, Amaia PR, Camilo RL, Leire LL, Jesús TS, María CVV (2009) Appl Catal A 366:315–324

    Article  Google Scholar 

  41. Corro G, Bañuelos F, Vidal E, Cebada S (2019) Catal Today. https://doi.org/10.1016/j.cattod.2019.03.007

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation of China (NSFC) (No. 21978112), International Joint Research Laboratory for Biomass Conversion Technology at Jiangnan University and MOE & SAFEA for the 111 Project (B13025) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingbo Zhang or Mingming Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Chen, Y., Zhu, M. et al. Acidic–Basic Bifunctional Magnetic Mesoporous CoFe2O4@(CaO–ZnO) for the Synthesis of Glycerol Carbonate. Catal Lett 150, 2863–2872 (2020). https://doi.org/10.1007/s10562-020-03191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03191-2

Keywords

Navigation