Goudarzi E, Asadi R, Darian JT, Shahbazi Kootenaei A (2019) The stability and catalytic performance of K-modified molybdena supported on a titanate nanostructured catalyst in the oxidative dehydrogenation of propane. RSC Adv 9:11797–11809. https://doi.org/10.1039/C8RA10598G
CAS
Article
Google Scholar
Moghaddam MS, Towfighi J (2018) Synthesis of vanadium catalysts supported on cerium containing TiO2 nanotubes for the oxidative dehydrogenation of propane. Pet Chem 1(58):659–665. https://doi.org/10.1134/S0965544118080170
Article
Google Scholar
Varzaneh AZ, Moghaddam MS, Darian JT (2018) Oxidative dehydrogenation of propane over vanadium catalyst supported on nano-HZSM-5. Pet Chem 58:13–21. https://doi.org/10.1134/S0965544118010036
CAS
Article
Google Scholar
Moghaddam MS, Towfighi J (2017) Vanadium oxide supported on Al-modified titania nanotubes for oxidative dehydrogenation of propane. J Chem Pet Eng 51:113–121
Google Scholar
Sereda G, Kim T, Jones A et al (2011) Phthalocyanine- and calixarene-templating effect on the catalytic performance of solid supported vanadates. Catal Lett 141:1086–1096. https://doi.org/10.1007/s10562-011-0662-7
CAS
Article
Google Scholar
De M, Kunzru D (2004) Oxidative dehydrogenation of propane on V2O5/Zro 2 catalyst. Catal Lett. 96:33–42. https://doi.org/10.1023/B:CATL.0000029526.50161.3e
CAS
Article
Google Scholar
Desponds O, Keiski RL, Somorjai GA (1993) The oxidative dehydrogenation of ethane over molybdenum-vanadium-niobium oxide catalysts: the role of catalyst composition. Catal Lett 19:17–32. https://doi.org/10.1007/BF00765198
CAS
Article
Google Scholar
Capannelli G, Carosini E, Monticelli O et al (1996) Enhancement of the catalytic performance of V2O5/γ-Al2O3 catalysts in the oxidehydrogenation of propane to propylene by the use of a monolith-type reactor. Catal Lett 39:241–246. https://doi.org/10.1007/BF00805589
CAS
Article
Google Scholar
Pérez Pujol A, Valenzuela R, Fuerte A et al (2003) High performance of V-Ga–O catalysts for oxidehydrogenation of propane. Catal Today 78:247–256. https://doi.org/10.1016/S0920-5861(02)00348-6
CAS
Article
Google Scholar
Shahbazi Kootenaei AH, Towfighi J, Khodadadi A, Mortazavi Y (2015) Characterization and deactivation study of mixed vanadium and potassium oxide supported on microemulsion-mediated titania nanoparticles as catalyst in oxidative dehydrogenation of propane. Int J Chem React Eng 13:9–19. https://doi.org/10.1515/ijcre-2014-0105
CAS
Article
Google Scholar
Kootenaei AHS, Towfighi J, Khodadadi A, Mortazavi Y (2014) Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane. Appl Surf Sci 298:26–35. https://doi.org/10.1016/J.APSUSC.2013.12.172
CAS
Article
Google Scholar
Haukka S, Lakomaa E-L, Suntola T (1999) Adsorption controlled preparation of heterogeneous catalysts. Stud Surf Sci Catal 120:715–750. https://doi.org/10.1016/S0167-2991(99)80570-9
Article
Google Scholar
Baltes M, Collart O, Van Der Voort P, Vansant EF (1999) Synthesis of supported transition metal oxide catalysts by the designed deposition of acetylacetonate complexes. Langmuir 15:5841–5845. https://doi.org/10.1021/LA981362B
CAS
Article
Google Scholar
Inumaru K, Misono M, Okuhara T (1997) Structure and catalysis of vanadium oxide overlayers on oxide supports. Appl Catal A Gen 149:133–149. https://doi.org/10.1016/S0926-860X(96)00254-2
CAS
Article
Google Scholar
López Nieto JM, Soler J, Concepción P et al (1999) Oxidative dehydrogenation of alkanes over V-based catalysts: influence of redox properties on catalytic performance. J Catal 185:324–332. https://doi.org/10.1006/JCAT.1999.2467
Article
Google Scholar
O’Neill BJ, Jackson DHK, Lee J et al (2015) Catalyst design with atomic layer deposition. ACS Catal 5:1804–1825. https://doi.org/10.1021/cs501862h
CAS
Article
Google Scholar
Silvennoinen RJ, Jylhä OJT, Lindblad M et al (2007) Supported iridium catalysts prepared by atomic layer deposition: effect of reduction and calcination on activity in toluene hydrogenation. Catal Lett 114:135–144. https://doi.org/10.1007/s10562-007-9051-7
CAS
Article
Google Scholar
Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 127:113–131. https://doi.org/10.1016/J.CATTOD.2007.05.009
CAS
Article
Google Scholar
Blasco T, Galli A, López Nieto JM, Trifiró F (1997) Oxidative dehydrogenation of ethane and n-butane on VOx/Al2O3 Catalysts. J Catal 169:203–211. https://doi.org/10.1006/JCAT.1997.1673
CAS
Article
Google Scholar
Argyle MD, Chen K, Bell AT, Iglesia E (2002) Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia. J Catal 208:139–149. https://doi.org/10.1006/JCAT.2002.3570
CAS
Article
Google Scholar
Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205–216. https://doi.org/10.1006/JCAT.1998.2295
CAS
Article
Google Scholar
Pak C, Bell AT, Tilley TD (2002) Oxidative dehydrogenation of propane over vanadia-magnesia catalysts prepared by thermolysis of OV(OtBu)3 in the presence of nanocrystalline MgO. J Catal 206:49–59. https://doi.org/10.1006/JCAT.2001.3473
CAS
Article
Google Scholar
Kondratenko E, Baerns M (2001) Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O—the role of vanadia distribution and oxidant activation. Appl Catal A Gen 222:133–143. https://doi.org/10.1016/S0926-860X(01)00836-5
CAS
Article
Google Scholar
Chen X, Pomerantseva E, Banerjee P et al (2012) Ozone-based atomic layer deposition of crystalline V 2 O 5 films for high performance electrochemical energy storage. Chem Mater 24:1255–1261. https://doi.org/10.1021/cm202901z
CAS
Article
Google Scholar
Keränen J, Auroux A, Ek S, Niinistö L (2002) Preparation, characterization and activity testing of vanadia catalysts deposited onto silica and alumina supports by atomic layer deposition. Appl Catal A Gen 228:213–225. https://doi.org/10.1016/S0926-860X(01)00975-9
Article
Google Scholar
Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17:236–246. https://doi.org/10.1016/J.MATTOD.2014.04.026
CAS
Article
Google Scholar
Taheri Najafabadi A, Khodadadi AA, Parnian MJ, Mortazavi Y (2016) Atomic layer deposited Co/γ-Al2O3 catalyst with enhanced cobalt dispersion and Fischer-Tropsch synthesis activity and selectivity. Appl Catal A Gen 511:31–46. https://doi.org/10.1016/J.APCATA.2015.11.027
CAS
Article
Google Scholar
Maruyama T, Ikuta Y (1993) Vanadium dioxide thin films prepared by chemical vapour deposition from vanadium(III) acetylacetonate. J Mater Sci 28:5073–5078. https://doi.org/10.1007/BF00361182
CAS
Article
Google Scholar
Olthof B, Khodakov A, Bell AT, Iglesia E (2000) Effects of support composition and pretreatment conditions on the structure of vanadia dispersed on SiO2, Al2O3, TiO2, ZrO2, and HfO2. J Phys Chem B 104:1516–1528. https://doi.org/10.1021/jp9921248
CAS
Article
Google Scholar
Kumar CP, Reddy KR, Rao VV, Chary KVR (2002) Vapour phase ammoxidation of toluene over vanadium oxide supported on Nb2O5–TiO2. Green Chem 4:513–516. https://doi.org/10.1039/B206581A
CAS
Article
Google Scholar
Nenashev RN, Mordvinova NE, Zlomanov VP, Kuznetsov VL (2015) Thermal decomposition of vanadyl acetylacetonate. Inorg Mater 51:891–896. https://doi.org/10.1134/S0020168515090150
CAS
Article
Google Scholar
Rautiainen A, Lindblad M, Backman LB, Puurunen RL (2002) Preparation of silica-supported cobalt catalysts through chemisorption of cobalt(ii) and cobalt(iii) acetylacetonate. Phys Chem Chem Phys 4:2466–2472. https://doi.org/10.1039/b201168a
CAS
Article
Google Scholar
Baltes M, Van Der Voort P, Weckhuysen BM et al (2000) Synthesis and characterization of alumina-supported vanadium oxide catalysts prepared by the molecular designed dispersion of VO(acac)2 complexes. Phys Chem Chem Phys 2:2673–2680. https://doi.org/10.1039/b002141p
CAS
Article
Google Scholar
Rivoira L, Martínez ML, Anunziata O, Beltramone A (2017) Vanadium oxide supported on mesoporous SBA-15 modified with Al and Ga as a highly active catalyst in the ODS of DBT. Microporous Mesoporous Mater 254:96–113. https://doi.org/10.1016/j.micromeso.2017.04.019
CAS
Article
Google Scholar
Azizpour H, Talebi M, Tichelaar FD et al (2017) Effective coating of titania nanoparticles with alumina via atomic layer deposition. Appl Surf Sci 426:480–496. https://doi.org/10.1016/J.APSUSC.2017.07.168
CAS
Article
Google Scholar
Shee D, Rao TVM, Deo G (2006) Kinetic parameter estimation for supported vanadium oxide catalysts for propane ODH reaction: effect of loading and support. Catal Today 118:288–297. https://doi.org/10.1016/J.CATTOD.2006.07.017
CAS
Article
Google Scholar
Rodella CB, Mastelaro VR (2003) Structural characterization of the V2O5/TiO2 system obtained by the sol–gel method. J Phys Chem Solids 64:833–839. https://doi.org/10.1016/S0022-3697(02)00414-6
CAS
Article
Google Scholar
Khatun N, Anita RP et al (2017) Anatase to rutile phase transition promoted by vanadium substitution in TiO2: a structural, vibrational and optoelectronic study. Ceram Int 43:14128–14134. https://doi.org/10.1016/J.CERAMINT.2017.07.153
CAS
Article
Google Scholar
Balikdjian JP, Davidson A, Launay S et al (2000) Sintering and phase transformation of V-loaded anatase materials containing bulk and surface V species. J Phys Chem 104:8931–8939. https://doi.org/10.1021/JP000569M
CAS
Article
Google Scholar
Martínez-Huerta MV, Fierro JLG, Bañares MA (2009) Monitoring the states of vanadium oxide during the transformation of TiO2 anatase-to-rutile under reactive environments: H2 reduction and oxidative dehydrogenation of ethane. Catal Commun 11:15–19. https://doi.org/10.1016/J.CATCOM.2009.08.002
Article
Google Scholar
Fan Z, Guo H, Fang K, Sun Y (2015) Efficient V2O5 /TiO2 composite catalysts for dimethoxymethane synthesis from methanol selective oxidation. RSC Adv 5:24795–24802. https://doi.org/10.1039/C4RA16727A
CAS
Article
Google Scholar
Jones AC, Hitchman ML (2008) Chemical Vapour Deposition. Royal Society of Chemistry, Cambridge
Book
Google Scholar
Baji Z, Lábadi Z, Horváth ZE et al (2012) Nucleation and growth modes of ALD ZnO. Cryst Growth Des 12:5615–5620. https://doi.org/10.1021/cg301129v
CAS
Article
Google Scholar
Li Y, Song X, Wei Z et al (2014) Preparation and property of Mo-doped visible-light response titaniumdioxide photocatalyst. J Spectrosc 2014:1–5. https://doi.org/10.1155/2014/392798
CAS
Article
Google Scholar
Tangirala M, Zhang K, Nminibapiel D et al (2014) Physical analysis of VO2 films grown by atomic layer deposition and RF magnetron sputtering. ECS J Solid State Sci Technol 3:N89–N94. https://doi.org/10.1149/2.006406jss
CAS
Article
Google Scholar
Haber J, Machej T, Serwicka EM, Wachs IE (1995) Mechanism of surface spreading in vanadia-titania system. Catal Lett 32:101–114. https://doi.org/10.1007/BF00806105
CAS
Article
Google Scholar