Skip to main content

Titania-Supported Vanadium Oxide Synthesis by Atomic Layer Deposition and Its Application for Low-Temperature Oxidative Dehydrogenation of Propane

Abstract

Vanadium oxide supported on TiO2(P25) catalysts were synthesized via atomic layer deposition (ALD) of vanadyl acetylacetonate (VO(acac)2). Comprehensive investigations were performed to evaluate the ALD temperature window and the saturation deposition period of VO(acac)2, which were found to be 140–210 °C and 120 min, respectively. The synthesized catalysts were compared to their corresponding impregnation ones for the oxidative dehydrogenation of propane reaction (ODH-P). The ODH-P results indicated the superior performance of the ALD catalysts for the low temperature ODH-P (< 350 °C) given its better dispersion of vanadium oxide(vanadia) in the ALD catalysts. Several characterization techniques including HR-TEM, FE-SEM, XRD, BET, XPS, O2-chemisorption, ICP-OES, and H2-TPR were utilized to evaluate the influence of the ALD and impregnation methods of synthesis on different features of the catalysts. It was observed that the ALD method could offer far better dispersion of the active phase on the support of the catalyst, which is beneficial for the catalytic performance.

Graphic Abstract

Variations of Hacac, acetone, and CO2 FTIR absorbance peaks’ areas versus the support temperature

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Goudarzi E, Asadi R, Darian JT, Shahbazi Kootenaei A (2019) The stability and catalytic performance of K-modified molybdena supported on a titanate nanostructured catalyst in the oxidative dehydrogenation of propane. RSC Adv 9:11797–11809. https://doi.org/10.1039/C8RA10598G

    CAS  Article  Google Scholar 

  2. Moghaddam MS, Towfighi J (2018) Synthesis of vanadium catalysts supported on cerium containing TiO2 nanotubes for the oxidative dehydrogenation of propane. Pet Chem 1(58):659–665. https://doi.org/10.1134/S0965544118080170

    Article  Google Scholar 

  3. Varzaneh AZ, Moghaddam MS, Darian JT (2018) Oxidative dehydrogenation of propane over vanadium catalyst supported on nano-HZSM-5. Pet Chem 58:13–21. https://doi.org/10.1134/S0965544118010036

    CAS  Article  Google Scholar 

  4. Moghaddam MS, Towfighi J (2017) Vanadium oxide supported on Al-modified titania nanotubes for oxidative dehydrogenation of propane. J Chem Pet Eng 51:113–121

    Google Scholar 

  5. Sereda G, Kim T, Jones A et al (2011) Phthalocyanine- and calixarene-templating effect on the catalytic performance of solid supported vanadates. Catal Lett 141:1086–1096. https://doi.org/10.1007/s10562-011-0662-7

    CAS  Article  Google Scholar 

  6. De M, Kunzru D (2004) Oxidative dehydrogenation of propane on V2O5/Zro 2 catalyst. Catal Lett. 96:33–42. https://doi.org/10.1023/B:CATL.0000029526.50161.3e

    CAS  Article  Google Scholar 

  7. Desponds O, Keiski RL, Somorjai GA (1993) The oxidative dehydrogenation of ethane over molybdenum-vanadium-niobium oxide catalysts: the role of catalyst composition. Catal Lett 19:17–32. https://doi.org/10.1007/BF00765198

    CAS  Article  Google Scholar 

  8. Capannelli G, Carosini E, Monticelli O et al (1996) Enhancement of the catalytic performance of V2O5/γ-Al2O3 catalysts in the oxidehydrogenation of propane to propylene by the use of a monolith-type reactor. Catal Lett 39:241–246. https://doi.org/10.1007/BF00805589

    CAS  Article  Google Scholar 

  9. Pérez Pujol A, Valenzuela R, Fuerte A et al (2003) High performance of V-Ga–O catalysts for oxidehydrogenation of propane. Catal Today 78:247–256. https://doi.org/10.1016/S0920-5861(02)00348-6

    CAS  Article  Google Scholar 

  10. Shahbazi Kootenaei AH, Towfighi J, Khodadadi A, Mortazavi Y (2015) Characterization and deactivation study of mixed vanadium and potassium oxide supported on microemulsion-mediated titania nanoparticles as catalyst in oxidative dehydrogenation of propane. Int J Chem React Eng 13:9–19. https://doi.org/10.1515/ijcre-2014-0105

    CAS  Article  Google Scholar 

  11. Kootenaei AHS, Towfighi J, Khodadadi A, Mortazavi Y (2014) Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane. Appl Surf Sci 298:26–35. https://doi.org/10.1016/J.APSUSC.2013.12.172

    CAS  Article  Google Scholar 

  12. Haukka S, Lakomaa E-L, Suntola T (1999) Adsorption controlled preparation of heterogeneous catalysts. Stud Surf Sci Catal 120:715–750. https://doi.org/10.1016/S0167-2991(99)80570-9

    Article  Google Scholar 

  13. Baltes M, Collart O, Van Der Voort P, Vansant EF (1999) Synthesis of supported transition metal oxide catalysts by the designed deposition of acetylacetonate complexes. Langmuir 15:5841–5845. https://doi.org/10.1021/LA981362B

    CAS  Article  Google Scholar 

  14. Inumaru K, Misono M, Okuhara T (1997) Structure and catalysis of vanadium oxide overlayers on oxide supports. Appl Catal A Gen 149:133–149. https://doi.org/10.1016/S0926-860X(96)00254-2

    CAS  Article  Google Scholar 

  15. López Nieto JM, Soler J, Concepción P et al (1999) Oxidative dehydrogenation of alkanes over V-based catalysts: influence of redox properties on catalytic performance. J Catal 185:324–332. https://doi.org/10.1006/JCAT.1999.2467

    Article  Google Scholar 

  16. O’Neill BJ, Jackson DHK, Lee J et al (2015) Catalyst design with atomic layer deposition. ACS Catal 5:1804–1825. https://doi.org/10.1021/cs501862h

    CAS  Article  Google Scholar 

  17. Silvennoinen RJ, Jylhä OJT, Lindblad M et al (2007) Supported iridium catalysts prepared by atomic layer deposition: effect of reduction and calcination on activity in toluene hydrogenation. Catal Lett 114:135–144. https://doi.org/10.1007/s10562-007-9051-7

    CAS  Article  Google Scholar 

  18. Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 127:113–131. https://doi.org/10.1016/J.CATTOD.2007.05.009

    CAS  Article  Google Scholar 

  19. Blasco T, Galli A, López Nieto JM, Trifiró F (1997) Oxidative dehydrogenation of ethane and n-butane on VOx/Al2O3 Catalysts. J Catal 169:203–211. https://doi.org/10.1006/JCAT.1997.1673

    CAS  Article  Google Scholar 

  20. Argyle MD, Chen K, Bell AT, Iglesia E (2002) Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia. J Catal 208:139–149. https://doi.org/10.1006/JCAT.2002.3570

    CAS  Article  Google Scholar 

  21. Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205–216. https://doi.org/10.1006/JCAT.1998.2295

    CAS  Article  Google Scholar 

  22. Pak C, Bell AT, Tilley TD (2002) Oxidative dehydrogenation of propane over vanadia-magnesia catalysts prepared by thermolysis of OV(OtBu)3 in the presence of nanocrystalline MgO. J Catal 206:49–59. https://doi.org/10.1006/JCAT.2001.3473

    CAS  Article  Google Scholar 

  23. Kondratenko E, Baerns M (2001) Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O—the role of vanadia distribution and oxidant activation. Appl Catal A Gen 222:133–143. https://doi.org/10.1016/S0926-860X(01)00836-5

    CAS  Article  Google Scholar 

  24. Chen X, Pomerantseva E, Banerjee P et al (2012) Ozone-based atomic layer deposition of crystalline V 2 O 5 films for high performance electrochemical energy storage. Chem Mater 24:1255–1261. https://doi.org/10.1021/cm202901z

    CAS  Article  Google Scholar 

  25. Keränen J, Auroux A, Ek S, Niinistö L (2002) Preparation, characterization and activity testing of vanadia catalysts deposited onto silica and alumina supports by atomic layer deposition. Appl Catal A Gen 228:213–225. https://doi.org/10.1016/S0926-860X(01)00975-9

    Article  Google Scholar 

  26. Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17:236–246. https://doi.org/10.1016/J.MATTOD.2014.04.026

    CAS  Article  Google Scholar 

  27. Taheri Najafabadi A, Khodadadi AA, Parnian MJ, Mortazavi Y (2016) Atomic layer deposited Co/γ-Al2O3 catalyst with enhanced cobalt dispersion and Fischer-Tropsch synthesis activity and selectivity. Appl Catal A Gen 511:31–46. https://doi.org/10.1016/J.APCATA.2015.11.027

    CAS  Article  Google Scholar 

  28. Maruyama T, Ikuta Y (1993) Vanadium dioxide thin films prepared by chemical vapour deposition from vanadium(III) acetylacetonate. J Mater Sci 28:5073–5078. https://doi.org/10.1007/BF00361182

    CAS  Article  Google Scholar 

  29. Olthof B, Khodakov A, Bell AT, Iglesia E (2000) Effects of support composition and pretreatment conditions on the structure of vanadia dispersed on SiO2, Al2O3, TiO2, ZrO2, and HfO2. J Phys Chem B 104:1516–1528. https://doi.org/10.1021/jp9921248

    CAS  Article  Google Scholar 

  30. Kumar CP, Reddy KR, Rao VV, Chary KVR (2002) Vapour phase ammoxidation of toluene over vanadium oxide supported on Nb2O5–TiO2. Green Chem 4:513–516. https://doi.org/10.1039/B206581A

    CAS  Article  Google Scholar 

  31. Nenashev RN, Mordvinova NE, Zlomanov VP, Kuznetsov VL (2015) Thermal decomposition of vanadyl acetylacetonate. Inorg Mater 51:891–896. https://doi.org/10.1134/S0020168515090150

    CAS  Article  Google Scholar 

  32. Rautiainen A, Lindblad M, Backman LB, Puurunen RL (2002) Preparation of silica-supported cobalt catalysts through chemisorption of cobalt(ii) and cobalt(iii) acetylacetonate. Phys Chem Chem Phys 4:2466–2472. https://doi.org/10.1039/b201168a

    CAS  Article  Google Scholar 

  33. Baltes M, Van Der Voort P, Weckhuysen BM et al (2000) Synthesis and characterization of alumina-supported vanadium oxide catalysts prepared by the molecular designed dispersion of VO(acac)2 complexes. Phys Chem Chem Phys 2:2673–2680. https://doi.org/10.1039/b002141p

    CAS  Article  Google Scholar 

  34. Rivoira L, Martínez ML, Anunziata O, Beltramone A (2017) Vanadium oxide supported on mesoporous SBA-15 modified with Al and Ga as a highly active catalyst in the ODS of DBT. Microporous Mesoporous Mater 254:96–113. https://doi.org/10.1016/j.micromeso.2017.04.019

    CAS  Article  Google Scholar 

  35. Azizpour H, Talebi M, Tichelaar FD et al (2017) Effective coating of titania nanoparticles with alumina via atomic layer deposition. Appl Surf Sci 426:480–496. https://doi.org/10.1016/J.APSUSC.2017.07.168

    CAS  Article  Google Scholar 

  36. Shee D, Rao TVM, Deo G (2006) Kinetic parameter estimation for supported vanadium oxide catalysts for propane ODH reaction: effect of loading and support. Catal Today 118:288–297. https://doi.org/10.1016/J.CATTOD.2006.07.017

    CAS  Article  Google Scholar 

  37. Rodella CB, Mastelaro VR (2003) Structural characterization of the V2O5/TiO2 system obtained by the sol–gel method. J Phys Chem Solids 64:833–839. https://doi.org/10.1016/S0022-3697(02)00414-6

    CAS  Article  Google Scholar 

  38. Khatun N, Anita RP et al (2017) Anatase to rutile phase transition promoted by vanadium substitution in TiO2: a structural, vibrational and optoelectronic study. Ceram Int 43:14128–14134. https://doi.org/10.1016/J.CERAMINT.2017.07.153

    CAS  Article  Google Scholar 

  39. Balikdjian JP, Davidson A, Launay S et al (2000) Sintering and phase transformation of V-loaded anatase materials containing bulk and surface V species. J Phys Chem 104:8931–8939. https://doi.org/10.1021/JP000569M

    CAS  Article  Google Scholar 

  40. Martínez-Huerta MV, Fierro JLG, Bañares MA (2009) Monitoring the states of vanadium oxide during the transformation of TiO2 anatase-to-rutile under reactive environments: H2 reduction and oxidative dehydrogenation of ethane. Catal Commun 11:15–19. https://doi.org/10.1016/J.CATCOM.2009.08.002

    Article  Google Scholar 

  41. Fan Z, Guo H, Fang K, Sun Y (2015) Efficient V2O5 /TiO2 composite catalysts for dimethoxymethane synthesis from methanol selective oxidation. RSC Adv 5:24795–24802. https://doi.org/10.1039/C4RA16727A

    CAS  Article  Google Scholar 

  42. Jones AC, Hitchman ML (2008) Chemical Vapour Deposition. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  43. Baji Z, Lábadi Z, Horváth ZE et al (2012) Nucleation and growth modes of ALD ZnO. Cryst Growth Des 12:5615–5620. https://doi.org/10.1021/cg301129v

    CAS  Article  Google Scholar 

  44. Li Y, Song X, Wei Z et al (2014) Preparation and property of Mo-doped visible-light response titaniumdioxide photocatalyst. J Spectrosc 2014:1–5. https://doi.org/10.1155/2014/392798

    CAS  Article  Google Scholar 

  45. Tangirala M, Zhang K, Nminibapiel D et al (2014) Physical analysis of VO2 films grown by atomic layer deposition and RF magnetron sputtering. ECS J Solid State Sci Technol 3:N89–N94. https://doi.org/10.1149/2.006406jss

    CAS  Article  Google Scholar 

  46. Haber J, Machej T, Serwicka EM, Wachs IE (1995) Mechanism of surface spreading in vanadia-titania system. Catal Lett 32:101–114. https://doi.org/10.1007/BF00806105

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Towfighi Darian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazerooni, H., Towfighi Darian, J., Mortazavi, Y. et al. Titania-Supported Vanadium Oxide Synthesis by Atomic Layer Deposition and Its Application for Low-Temperature Oxidative Dehydrogenation of Propane. Catal Lett 150, 2807–2822 (2020). https://doi.org/10.1007/s10562-020-03189-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03189-w

Keywords

  • Atomic layer deposition
  • Low temperature ODH-P
  • Vanadium oxide
  • Temperature window
  • Dispersion