Skip to main content
Log in

Isobutane/1-butene Alkylation Performance of Ammonium Fluoride-Modified HUSY Zeolite

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of modified HUSY zeolites were prepared by immersing with different concentration of NH4F solution at low temperature, and their catalytic performance for isobutane/1-butene alkylation reaction was investigated. The physicochemical properties of modified catalysts were characterized by XRD, N2 adsorption–desorption isotherms, ICP, pyridine-IR and SEM. The results indicated that HUSY zeolite with higher Si/Al ratio is more sensitive to NH4F leaching, resulting in more severe structural amorphization. NH4F modification affects not only the pore structure but also the acid properties. The amount of Lewis acid sites on the modified zeolites was reduced and the ratio of Brønsted/Lewis acid sites was significantly enhanced in comparison with that of parent zeolite. Such properties of modified zeolites account for the superior performance for isobutane/1-butene alkylation. The initial C8 selectivity was increased to 74 wt% over the modified HUSY (Si/Al = 2.7) zeolite using 5 wt% NH4F solution, which was about 15 wt% higher than that achieved on the HUSY parent. TG and in situ IR analyses of the deactivated catalyst indicated that some deposits were formed on the catalyst and the alkylation activity could be restored by regeneration at suitable conditions (520 °C under air atmosphere).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hommeltoft SI (2001) Isobutane alkylation: recent developments and future perspectives. Appl Catal A 221(s1–2):421–428

    Article  CAS  Google Scholar 

  2. Albright LF (2009) Present and future alkylation processes in refineries. Ind Eng Chem Res 48(3):1409–1413

    Article  CAS  Google Scholar 

  3. Huang CP, Liu ZC, Xu CM (2004) Effects of additives on the properties of chloroaluminate ionic liquids catalyst for alkylation of isobutane and butene. Appl Catal A 277(1–2):41–43

    Article  CAS  Google Scholar 

  4. Yoo K, Namboodiri VV, Varma RS (2004) Ionic liquid-catalyzed alkylation of isobutane with 2-butene. J Catal 222(2):511–519

    Article  CAS  Google Scholar 

  5. Hu P, Wang Y, Meng X (2017) Isobutane alkylation with 2-butene catalyzed by amide-AlCl3-based ionic liquid analogues. Fuel 189:203–209

    Article  CAS  Google Scholar 

  6. Feller A, Guzman A, Zuazo I (2003) A novel process for solid acid catalyzed isobutane/butene alkylation. Stud Surf Sci Catal 145(03):67–72

    Article  CAS  Google Scholar 

  7. Das D, Chakrabarty DK (1998) Activity and renderability of sulfated zirconia superacid catalysts in isobutane/1-butene alkylation. Energy Fuels 12(1):109–114

    Article  CAS  Google Scholar 

  8. Simpson MF, Wei J, Sundaresan S (1996) Kinetic analysis of isobutane/butene alkylation over ultrastable H-Y Zeolite. Ind Eng Chem Res 35(11):3861–3873

    Article  CAS  Google Scholar 

  9. Chen Z, Gao F, Ren K (2018) Mechanism of byproducts formation in the isobutane/butene alkylation on HY zeolites. RSC Adv 8(7):3392–3398

    Article  CAS  Google Scholar 

  10. Tarach K, Góra-Marek K, Tekla J (2014) Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility. J Catal 312(2):46–57

    Article  CAS  Google Scholar 

  11. Verboekend D, Vilé G, Pérez-Ramírez J (2012) Mesopore formation in USY and Beta zeolites by base leaching: selection criteria and optimization of pore-directing agents. Cryst Growth Des 12(6):3123–3132

    Article  CAS  Google Scholar 

  12. Zhang K, Fernandez S, Kobaslija S (2016) Optimization of hierarchical structures for Beta zeolites by post-synthetic base leaching. Ind Eng Chem Res 55(31):8567–8575

    Article  CAS  Google Scholar 

  13. Feng X, Jiang G, Zhao Z (2010) Highly effective F-modified HZSM-5 catalysts for the cracking of naphtha to produce light olefins. Energy Fuels 24(8):4111–4115

    Article  CAS  Google Scholar 

  14. Zhang C, Guo XW, Wang YN (2007) Methylation of 2-methylnaphthalene with methanol to 2,6-dimethylnaphthalene over HZSM-5 modified by NH4F and SrO. Chin Chem Lett 18(10):1281–1284

    Article  CAS  Google Scholar 

  15. Qin Z, Lakiss L, Gilson J-P, Thomas K, Goupil J-M, Fernandez C, Valtchev V (2013) Chemical equilibrium controlled etching of MFI-Type zeolite and its influence on zeolite structure, acidity, and catalytic activity. Chem Mater 25(14):2759–2766

    Article  CAS  Google Scholar 

  16. Corma A, Melo FV, Rawlence DJ (1990) Effect of the nonuniform dealumination on the acidity and catalytic activity of faujasite. Zeolites 10(7):690–694

    Article  CAS  Google Scholar 

  17. Kao HM, Grey CP, Pitchumani K (1998) Activation conditions play a key role in the activity of zeolite CaY: NMR and product studies of Brønsted acidity. J Phys Chem A 102(28):5627–5638

    Article  CAS  Google Scholar 

  18. Pu X, Liu NW, Shi L (2015) Acid properties and catalysis of USY zeolite with different extra-framework aluminum concentration. Microporous Mesoporous Mater 201(201):17–23

    Article  CAS  Google Scholar 

  19. Xin S, Wang Q, Xu J (2019) The acidic nature of “NMR-invisible” tri-coordinated framework aluminum species in zeolites. Chem Sci 10:10159–10169

    Article  CAS  Google Scholar 

  20. Yoo K, Burckle EC, Smirniotis PG (2002) Isobutane/2-butene alkylation using large-Pore zeolites: influence of pore structure on activity and selectivity. J Catal 211(1):6–18

    Article  CAS  Google Scholar 

  21. Corma A, Martínez A, Martínez C (1996) The effect of sulfation conditions and activation temperature of sulfate-doped ZrO2, TiO2 and SnO2 catalysts during isobutane/2-butene alkylation. Appl Catal A 144(1–2):249–268

    Article  CAS  Google Scholar 

  22. Sievers C, Liebert JS, Stratmann MM (2008) Comparison of zeolites LaX and LaY as catalysts for isobutane/2-butene alkylation. Appl Catal A 336(1–2):89–100

    Article  CAS  Google Scholar 

  23. Janik MJ, Davis RJ, Neurock M (2006) A density functional theory study of the alkylation of isobutane with butene over phosphotungstic acid. J Catal 244(1):65–77

    Article  CAS  Google Scholar 

  24. Feller A, Zuazo I, Guzman A (2003) Common mechanistic aspects of liquid and solid acid catalyzed alkylation of isobutane with n-butene. J Catal 216(1–2):313–323

    Article  CAS  Google Scholar 

  25. Diaz-Mendoza FA, Pernett-Bolano L, Cardona-Martinez N (1998) Effect of catalyst deactivation on the acid properties of zeolites used for isobutane/butene alkylation. Thermochim Acta 312(1–2):47–61

    Article  CAS  Google Scholar 

  26. Flego C, Kiricsi I, Parker WO Jr, Clerici MG (1995) Spectroscopic studies of LaHY-FAU catalyst deactivation in the alkylation of isobutane with 1-butene. Appl Catal A 124:107–119

    Article  CAS  Google Scholar 

  27. Yuying LU, Yongxiang LI, Jun LONG, Qiang REN, Qiang FU (2016) Molecular simulation of mechanism for C4 alkylation. Acta Petrolei Sin 32(1):14–20

    Google Scholar 

  28. Hess A, Kemnitz E (1997) Surface acidity and catalytic behavior of modified zirconium and titanium dioxides. Appl Catal A 149(2):373–389

    Article  CAS  Google Scholar 

  29. Berndt H, Martin A, Kosslick H (1994) Comparison of the acidic properties of ZSM-5 zeolites isomorphously substituted by Ga, In, B and Fe. Microporous Mater 2(3):197–204

    Article  CAS  Google Scholar 

  30. Josl R, Klingmann R, Traa Y (2004) Regeneration of zeolite catalysts deactivated in isobutane/butene alkylation: an in situ FTIR investigation at elevated H2 pressure. Catal Commun 5(5):239–241

    Article  CAS  Google Scholar 

  31. Petkovic LM, Ginosar DM, Burch KC (2005) Supercritical fluid removal of hydrocarbons adsorbed on wide-pore zeolite catalysts. J Catal 234(2):328–339

    Article  CAS  Google Scholar 

  32. Wijnja H, Schulthess CP (1999) ATR-FTIR and DRIFT spectroscopy of carbonate species at the aged γ-Al2O3/water interface. Spectrochim Acta A 55(4):861–872

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the Fundamental Research Funds for the Central Universities (WA1817027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ding, N., Hong, X. et al. Isobutane/1-butene Alkylation Performance of Ammonium Fluoride-Modified HUSY Zeolite. Catal Lett 150, 2996–3006 (2020). https://doi.org/10.1007/s10562-020-03187-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03187-y

Keywords

Navigation