Skip to main content
Log in

Effective Model of NOx Adsorption and Desorption on PtPd/CeO2-ZrO2 Passive NOx Adsorber

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An effective model for describing NOx adsorption and desorption on a PtPd/CeO2-ZrO2 passive NOx adsorber is presented. The kinetic parameters are evaluated from the available experimental data obtained during NOx adsorption/desorption experiments including CO2 and H2O in the feed, performed at 80, 120 and 160 °C both in the presence and in the absence of reducing agents (CO or C2H4 ). The model describes the temperature dependence of the NOx adsorption rate and capacity, the impact of CO, and dynamics of the NOx desorption events. The model predicts formation of nitrites, nitrates, and additional storage enabled in the presence of CO. Thermal decomposition of the stored NOx species results in two main desorption peaks. Nitrites are desorbed at lower temperatures while nitrates are thermally more stable. The evolution of nitrite and nitrate species in the model corresponds with the measured DRIFTS spectra of the catalyst surface. The presence of CO significantly improves the rate of NOx adsorption and storage efficiency at low temperatures, most probably due to reduction of oxidic Pt and Pd nanoparticles. The developed model captures well the observed trends and can be utilized for simulations of PNA performance under real operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Culbertson D, Khair M, Zhang S, Tan J, Spooler J (2015) The study of exhaust heating to improve SCR cold start performance. SAE Int J Engines 8:1187–1195

    Article  Google Scholar 

  2. Theis JR, Lambert CK (2019) Mechanistic assessment of low temperature NOx adsorbers for cold start NOx control on diesel engines. Catal Today 320:181–195

    Article  CAS  Google Scholar 

  3. Cole, JA (1997) US Patent 5656,244, Energy and Environmental Research Corporation

  4. Murata Y, Morita T, Wada K, Ohno H (2015) NOx trap three-way catalyst (N-TWC) concept: TWC with NOx adsorption properties at low temperatures for cold-start emission control. SAE Int J Fuels Lubr 8:4–9

    Article  Google Scholar 

  5. Chen HY, Collier JE, Liu D, Mantarosie L, Durán-Martín D, Novák V, Rajaram RR, Thompsett D (2016) Low temperature NO storage of zeolite supported Pd for low temperature diesel engine emission control. Catal Lett 146:1706–1711

    Article  CAS  Google Scholar 

  6. Vu A, Luo J, Li J, Epling WS (2017) Effects of CO on Pd/BEA passive NOx adsorbers. Catal Lett 147:745–750

    Article  CAS  Google Scholar 

  7. Khivantsev K, Derewinski MA, Prodinger S, Szanyi J, Gao F, Jaegers NR, Kovarik L, Wang Y (2018) Palladium/Beta zeolite passive NOx adsorbers (PNA): Clarification of PNA chemistry and the effects of CO and zeolite crystallite size on PNA performance. Appl Catal A 569:141–148

    Article  Google Scholar 

  8. Ryou YS, Lee J, Lee H, Kim CH, Kim DH (2017) Effect of sulfur aging and regeneration on low temperature NO adsorption over hydrothermally treated Pd/CeO2 and Pd/Ce0.58Zr0.42O2 catalysts. Catal Today 297:53–59

    Article  CAS  Google Scholar 

  9. Jones S, Crocker M, Ji Y, Song Y, Bueno-Lopez A (2016) CeO2-M2O3 Passive NOx adsorbers for cold start applications. Emiss Control Sci Technol 3:59–72

    Article  Google Scholar 

  10. Ji Y, Xu D, Bai S, Graham U, Crocker M, Chen B, Shi C, Harris D, Scapens D, Darab J (2017) Pt- and Pd- promoted CeO2-ZrO2 for passive NOx adsorber applications. Ind Eng Chem Res 56:111–125

    Article  CAS  Google Scholar 

  11. Ji Y, Xu D, Crocker M, Theis JR, Lambert C, Bueno-Lopez A, Harris D, Scapens D (2018) Mn-based mixed oxides for low temperature NOx adsorber applications. Appl Catal A 567:90–101

    Article  CAS  Google Scholar 

  12. Gu Y, Epling WS (2019) Passive NOx adsorber: an overview of catalyst performance and reaction chemistry. Appl Catal A 570:1–14

    Article  CAS  Google Scholar 

  13. Jones S, Ji Y, Crocker M (2016) Ceria-based catalysts for low temperature NOx storage and release. Catal Lett 146:909–917

    Article  CAS  Google Scholar 

  14. Ji Y, Bai S, Crocker M (2015) Al2O3-based passive NOx adsorbers for low temperature applications. Appl Catal B 170–171:283–292

    Article  Google Scholar 

  15. Philipp S, Vogel H, Drochner A, Kunert J, Theis J, Lox ES (2004) Investigation of NO adsorption and NO/O2 co-adsorption on NOx-storage-components by DRIFT-spectroscopy. Top Catal 30(31):235–238

    Article  Google Scholar 

  16. Azambre B, Zenboury L, Koch A, Weber JV (2009) Adsorption and desorption of NOx on commercial ceria–zirconia (CexZr1-xO2) mixed oxides: a combined TGA, TPD-MS, DRIFTS study. J Phys Chem C 113:13287–13299

    Article  CAS  Google Scholar 

  17. Theis JR, Lambert CK (2017) The effects of CO, C2H4, H2O on the NOx storage performance of low temperature NOx adsorbers for diesel applications. SAE Int J Engines 10:1627–1637

    Article  Google Scholar 

  18. Güthenke A, Chatterjee D, Weibel M, Krutzsch B, Kočí P, Marek M, Nova I, Tronconi E (2008) Current status of modeling lean exhaust gas aftertreatment catalysts. Adv Chem Eng 33:103–211

    Article  Google Scholar 

  19. Kočí P, Bártová Š Štěpánek J, Marek M, Weibel M, Kubíček M, Schmeißer V, Plát F, Chatterjee D (2009) Global kinetic model for the regeneration of NOx storage catalyst with CO, H2 and C3H6 in the presence of CO2 and H2O. Catal Today 147:S257–S264

  20. Chatterjee D, Schmeißer V, Weibel M, Krutzsch B, Marek M, Kočí P (2010) Modelling of a combined NOx storage and NH3-SCR catalytic system for Diesel exhaust gas aftertreatment. Catal Today 151:395–409

    Article  CAS  Google Scholar 

  21. Štěpánek J, Kočí P, Marek M, Kubíček M (2012) Catalyst simulations based on coupling of 3D CFD tool with effective 1D channel models. Catal Today 188:87–93

    Article  Google Scholar 

  22. Kočí P, Bártová Š, Choi J, Mráček D, Pihl JA, Marek M, Partridge WP, Kim M (2013) Effective model for prediction of N2O and NH3 formation during the regeneration of NOx storage catalyst. Top Catal 56:118–124

    Article  Google Scholar 

  23. Kočí P (2018) Global kinetic modelling of NSR catalysts. In: Lietti L, Castoldi L (eds) NOx trap catalysts and technologies. Fundamentals and industrial applications. The Royal Society of Chemistry, London, pp 279–320

    Chapter  Google Scholar 

  24. Theis JR (2016) An assessment of Pt and Pd model catalysts for low temperature NOx adsorption. Catal Today 267:93–109

    Article  CAS  Google Scholar 

  25. Arvajová A, Kočí P, Schmeißer V, Weibel M (2016) The impact of CO and C3H6 pulses on PtOx reduction and NO oxidation in a diesel oxidation catalyst. Appl Catal B 181:644–650

    Article  Google Scholar 

  26. Boutikos P, Březina J, Buzková Arvajová A, Kočí P (2019) Comparison of O2 and NO2 impact on PtOx and PdOx formation in diesel oxidation catalysts and their reduction by CO and C3H6 pulses. Chem Eng J 377:119654

    Article  Google Scholar 

  27. Buzková Arvajová A, Boutikos P, Pečinka R, Kočí P (2020) Global kinetic model of NO oxidation on Pd/γ-Al2O3 catalyst including PdOx formation and reduction by CO and C3H6. Appl Catal B 260:118141

    Article  Google Scholar 

  28. Levasseur B, Ebrahim AM, Bandosz TJ (2011) Role of Zr4+ cations in NO2 adsorption on Ce1-xZrxO2 mixed oxides at ambient conditions. Langmuir 27:9379–9386

    Article  CAS  Google Scholar 

  29. Ji Y, Toops TJ, Crocker M (2013) Isocyanate formation and reactivity on a Ba-based LNT catalyst studied by DRIFTS. Appl Catal B 140–141:265–275

    Article  Google Scholar 

  30. Lesage T, Verrier C, Bazin P, Saussey J, Daturi M (2003) Studying the NOx-trap mechanism over a Pt-Rh/Ba/Al2O3 catalyst by operando FT-IR spectroscopy. Phys Chem Chem Phys 5:4435–4440

    Article  CAS  Google Scholar 

  31. Hadjiivanov KI (2000) Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal Rev 42:71–144

    Article  CAS  Google Scholar 

  32. Mihaylov MY, Ivanova EZ, Aleksandrov HA, Petkov PS, Vayssilov GN, Hadjiivanov KI (2015) FTIR and density functional study of NO interaction with reduced ceria: identification of N3 and NO2 as new intermediates in NO conversion. Appl Catal B 176–177:107–119

    Article  Google Scholar 

  33. Bourane A, Dulaurent O, Salasc S, Sarda C, Bouly C, Bianchi D (2001) Heats of adsorption of linear NO species on a Pt/Al2O3 catalyst using in situ infrared spectroscopy under adsorption equilibrium. J Catal 204:77–88

    Article  CAS  Google Scholar 

  34. Daturi M, Binet C, Lavalley JC, Vidal H, Kašpar J, Graziani M, Blanchard G (1998) Influence of the activation conditions on the elimination of residual impurities on ceria–zirconia mixed oxides. J Chim Phys 95:2048–2060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jae-Soon Choi for assistance with the reactor measurements and Robert Pace for preliminary experiments. This work was funded in part by the Czech Science Foundation (GA 17-26018S), and by the National Science Foundation and the US Department of Energy (DOE) under award no. CBET-1258742. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kočí.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvasničková, A., Kočí, P., Ji, Y. et al. Effective Model of NOx Adsorption and Desorption on PtPd/CeO2-ZrO2 Passive NOx Adsorber. Catal Lett 150, 3223–3233 (2020). https://doi.org/10.1007/s10562-020-03186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03186-z

Keywords

Navigation