Skip to main content
Log in

Orbitals Permit the Interpretation of Core-Level Spectroscopies in Terms of Chemistry

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We present evidence that the use of orbital based analyses provides an important fundamental basis for interpreting and understanding the significance of features in core-level spectroscopies, in particular, X-ray photoelectron spectroscopy, XPS. A recent paper by Truhlar and colleagues cautions about the limitations of orbital based interpretations of photoelectron spectroscopy for the accurate modeling of the electronic structure of the ions. We provide an alternate view that does use orbitals to derive detailed information from XPS. We discuss the appropriate meaning of Koopmans’ theorem as a way to separate the chemically interesting initial state contributions to XPS binding energies, BEs, from the less interesting properties of highly excited ionic states, rather than as a way to estimate values of BEs and BE shifts. The use of orbitals and orbital occupations to take into account the spin and orbital angular momentum coupling that leads to the observed XPS multiplets is shown to be important to understand the number and energy spread of XPS features. The use of a standard approximation to determine the XPS intensities, essential for the theoretical prediction of XPS spectra, is shown to depend on the concept of ionization of electrons from specific orbitals. Finally, the use of orbital properties to identify and include the main many electron correlation of the ionic states in XPS is described. The importance of these considerations is shown by describing examples where they are used in the theoretical determination and the theoretical analysis of the XPS of representative systems.

Graphic Abstract

The orbital description of XPS is shown schematically below for the Ne atom. An orbital description can be applied to and is appropriate to understand the photoemission of complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Truhlar DG et al (2019) Orbitals and the interpretation of photoelectron spectroscopy and (e,2e) ionization experiments. Angew Chem Int Ed 58:12332

    Article  CAS  Google Scholar 

  2. Bagus PS, Ilton ES, Nelin CJ (2013) The interpretation of XPS spectra: insights into materials properties. Surf Sci Rep 68:273

    Article  CAS  Google Scholar 

  3. Bagus PS, Ilton ES, Nelin CJ (2018) Extracting chemical information from XPS spectra: a perspective. Catal Lett 148:1785

    Article  CAS  Google Scholar 

  4. Bagus PS et al (1991) Evidence for oxygen-island formation on Al(111): cluster-model theory and X-ray photoelectron spectroscopy. Phys Rev B 44:9025

    Article  CAS  Google Scholar 

  5. Aberg T (1967) Theory of X-ray satellites. Phys Rev 156:35

    Article  CAS  Google Scholar 

  6. Manne R, Åberg T (1970) Koopmans’ theorem for inner-shell ionization. Chem Phys Lett 7:282

    Article  CAS  Google Scholar 

  7. Cox PA (1975) Ionization energies of open-shell molecules in the frozen orbital approximation. Mol Phys 30:389

    Article  CAS  Google Scholar 

  8. Bagus PS (1965) Self-consistent-field wave functions for hole states of some Ne-like and Ar-like ions. Phys Rev 139:A619

    Article  Google Scholar 

  9. Bellafont NP, Illas F, Bagus PS (2015) Validation of Koopmans’ theorem for density functional theory binding energies. Phys Chem Chem Phys 17:4015

    Article  Google Scholar 

  10. Pueyo Bellafont N, Bagus PS, Illas F (2015) Prediction of core level binding energies in density functional theory: rigorous definition of initial and final state contributions and implications on the physical meaning of Kohn-Sham energies. J Chem Phys 142:214102

    Article  Google Scholar 

  11. Bagus PS, Illas F, Casanovas J (1997) The importance of 2s bonding contributions for the core level binding energies in organic compounds. Chem Phys Lett 272:168

    Article  CAS  Google Scholar 

  12. Bagus PS et al (2019) Surface core level BE shifts for CaO(100): insights into physical origins. Phys Chem Chem Phys 21:25431

    Article  CAS  Google Scholar 

  13. Mulliken RS (1949) Quelques aspects de la théorie des orbitales moléculaires. J Chim Phys 46:497

    Article  CAS  Google Scholar 

  14. Bagus PS, Broer R, Parmigiani F (2006) Anomalous electron correlation due to near degeneracy effects: low-lying ionic states of Ne and Ar. Chem Phys Lett 421:148

    Article  CAS  Google Scholar 

  15. Bagus PS, Sousa C, Illas F (2016) Consequences of electron correlation for XPS binding energies: representative case for C(1s) and O(1s) XPS of CO. J Chem Phys 145:144303

    Article  Google Scholar 

  16. Bagus PS, Freeman AJ, Sasaki F (1973) Prediction of new multiplet structure in photoemission experiments. Phys Rev Lett 30:850

    Article  CAS  Google Scholar 

  17. Freeman AJ, Bagus PS, Mallow JV (1973) Multiplet hole theory of core electron binding energies in transition metal ions. Int J Mag 4:35

    CAS  Google Scholar 

  18. Bagus PS et al (2000) Atomic many-body effects for the p-shell photoelectron spectra of transition metals. Phys Rev Lett 84:2259

    Article  CAS  Google Scholar 

  19. Bagus PS et al (2020) Analysis of the Fe 2p XPS for Hematite a Fe2O3: consequences of covalent bonding and orbital splittings on multiplet splittings. J Chem Phys 152:014704

    Article  Google Scholar 

  20. Bagus PS, Sousa C, Illas F (2019) Differential many-body effects for initial and core ionic states: impact on XPS spectra. Theor Chem Accounts 138:61

    Article  Google Scholar 

  21. Slater JC (1960) Quantum theory of atomic structure, vol I and II. McGraw-Hill, New York

    Google Scholar 

  22. Bagus PS, Ilton ES (2006) Effects of covalency on the p-shell photoemission of transition metals: MnO. Phys Rev B 73:155110

    Article  Google Scholar 

  23. Briggs D, Seah MP (eds) (1983) Practical surface analysis, vol 1. Wiley, Hoboken

    Google Scholar 

  24. Gupta RP, Sen SK (1974) Calculation of multiplet structure of core p-vacancy levels. Phys Rev B 10:71

    Article  CAS  Google Scholar 

  25. Gupta RP, Sen SK (1975) Calculation of multiplet structure of core p-vacancy levels. II. Phys Rev B 12:15

    Article  CAS  Google Scholar 

  26. Hermsmeier BD et al (1993) Energy dependence of the outer core-level multiplet structures in atomic Mn and Mn-containing compounds. Phys Rev B 48:12425

    Article  CAS  Google Scholar 

  27. Sanchez MB et al (2017) Composition assessment of ferric oxide by accurate peak fitting of the Fe 2p photoemission spectrum. Surf Interface Anal 49:253

    Article  Google Scholar 

  28. Hermsmeier B et al (1988) Direct evidence from gas-phase atomic spectra for an unscreened intra-atomic origin of outer-core multiplet splittings in solid manganese compounds. Phys Rev Lett 61:2592

    Article  CAS  Google Scholar 

  29. Viinikka E-K, Öhrn Y (1975) Configuration mixing in the 3s-hole state of transition-metal ions. Phys Rev B 11:4168

    Article  CAS  Google Scholar 

  30. Bagus PS, Broer R, Ilton ES (2004) A new near degeneracy effect for photoemission in transition metals. Chem Phys Lett 394:150

    Article  CAS  Google Scholar 

  31. Bagus PS et al (2019) A new mechanism for XPS line broadening: the 2p-XPS of Ti(IV). J Phys Chem C 123:7705

    Article  CAS  Google Scholar 

  32. Fadley CS (1978) Basic Concepts of X-ray photoelectron spectroscopy. In: Brundle CR, Baker AD (eds) Electron spectroscopy: theory, techniques and applications, vol 2. Academic Press, Cambridge, p 2

    Google Scholar 

  33. Ilton ES, Bagus PS (2011) XPS determination of uranium oxidation states. Surf Interface Anal 43:1549

    Article  CAS  Google Scholar 

  34. Bagus PS et al (1977) Width of the d-level final-state structure observed in the photoemission spectra of Fe/sub x/O. Phys Rev Lett 39:1229

    Article  CAS  Google Scholar 

  35. Bagus PS, Freeouf JL, Eastman DE (1977) Relative intensities for multiplet and crystal-field-split transition-metal-ion photoemission spectra. Phys Rev B 15:3661

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PSB acknowledge support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences (CSGB) Division through the Geosciences program at Pacific Northwest National Laboratory. FI has been supported by the Spanish Ministerio de Ciencia y Universidades (MICIUN) RTI2018-095460-B-I00 through and Excellence María de Maeztu program MDM-2017-0767 grants and, in part, by Generalitat de Catalunya grants 2017SGR13 and XRQTC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Bagus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagus, P.S., Illas, F. Orbitals Permit the Interpretation of Core-Level Spectroscopies in Terms of Chemistry. Catal Lett 150, 2457–2463 (2020). https://doi.org/10.1007/s10562-020-03169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03169-0

Keywords

Navigation