Skip to main content
Log in

Facile One-Pot Immobilization of a Novel Esterase and Its Application in Cinnamyl Acetate Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cinnamyl acetate has a wide application in food industries. This work focuses on cinnamyl acetate synthesis with a novel esterase. estGUZ753, an esterase gene from Geobacillus uzenensis DSMZ 13551, was first cloned and expressed in Pichia pastoris KM71. The optimal activity of EstGUZ753 towards p-NP caprylate was at pH 8.0 and 70 °C, and the half-life at 70 °C was 28 h. Furthermore, EstGUZ753 showed marked tolerance in methanol. The activity of EstGUZ753 increased up to 1.16-fold in 90% methanol after 72 h, and the half-life in it was 336 h. The crude fermentation broth of EstGUZ753 was immobilized directly onto the epoxy resin (Lx-105s), and the immobilized EstGUZ753 exhibited a 99% conversion for cinnamyl acetate synthesis at a high cinnamyl alcohol concentration in 6 h (cinnamyl alcohol: 1.0 M, enzyme dosage: 3%). These characteristics of EstGUZ753 indicated its great potential for organic synthesis.

Graphic Abstract

A novel esterase gene from Geobacillus uzenensis DSMZ 13551 was first cloned and expressed in Pichia pastoris KM71. Esterase EstGUZ753 showed marked thermostability at high temperature and tolerance in methanol. Furthermore, the crude fermentation broth of EstGUZ753 was immobilized directly onto the epoxy resin, and immobilized EstGUZ753 exhibited a 99% conversion for cinnamyl acetate synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schrader J, Etschmann M, Sell D, Hilmer J-M, Rabenhorst J (2004) Applied biocatalysis for the synthesis of natural flavour compounds–current industrial processes and future prospects. Biotechnol Lett 26(6):463–472

    CAS  PubMed  Google Scholar 

  2. Nenadis N, Wang L-F, Tsimidou M, Zhang H-Y (2004) Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. J Agric Food Chem 52(15):4669–4674

    CAS  PubMed  Google Scholar 

  3. Devulapelli VG, Weng H-S (2009) Synthesis of cinnamyl acetate by solid–liquid phase transfer catalysis: Kinetic study with a batch reactor. Catal Commun 10(13):1638–1642

    CAS  Google Scholar 

  4. Bokade VV, Yadav GD (2009) Transesterification of edible and nonedible vegetable oils with alcohols over heteropolyacids supported on acid-treated clay. Ind Eng Chem Res 48(21):9408–9415

    CAS  Google Scholar 

  5. Wang Y, Zhang D-H, Chen N, Zhi G-Y (2015) Synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid. Bioresour Technol 198:256–261

    CAS  PubMed  Google Scholar 

  6. Geng B, Wang M, Qi W, Su R, He Z (2012) Cinnamyl acetate synthesis by lipase-catalyzed transesterification in a solvent-free system. Biotechnol Appl Biochem 59(4):270–275

    CAS  PubMed  Google Scholar 

  7. Yadav GD, Devendran S (2012) Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochem 47(3):496–502

    CAS  Google Scholar 

  8. Wu Z, Qi W, Wang M, Su R, He Z (2014) Lipase immobilized on novel ceramic supporter with Ni activation for efficient cinnamyl acetate synthesis. J Mol Catal B: Enzym 110:32–38

    CAS  Google Scholar 

  9. Kim Y-O, Park I-S, Kim H-K, Nam B-H, Kong HJ, Kim W-J, Kim D-G, Kim B-S, Jee Y-J, Song J-H (2013) Shewanella sp. Ke75 esterase with specificity for p-nitorphenyl butyrate: gene cloning and characterization. J Korean Soc Appl Biol Chem 56(1):55–62

    Google Scholar 

  10. Sharma CK, Chauhan GS, Kanwar SS (2011) Synthesis of medically important ethyl cinnamate ester by porcine pancreatic lipase immobilized on poly (AAc-co-HPMA-cl-EGDMA) hydrogel. J Appl Polym Sci 121(5):2674–2679

    CAS  Google Scholar 

  11. Yadav GD, Dhoot SB (2009) Immobilized lipase-catalysed synthesis of cinnamyl laurate in non-aqueous media. J Mol Catal B: Enzym 57(1–4):34–39

    CAS  Google Scholar 

  12. Wolfson A, Dlugy C, Karanet A, Tavor D (2012) A sustainable one-pot synthesis of cinnamyl acetate in triacetin. Tetrahedron Lett 53(34):4565–4567

    CAS  Google Scholar 

  13. Siddiqui KS, Cavicchioli R (2005) Improved thermal stability and activity in the cold-adapted lipase B from Candida antarctica following chemical modification with oxidized polysaccharides. Extremophiles 9(6):471–476

    CAS  PubMed  Google Scholar 

  14. Trytek M, Jędrzejewski K, Fiedurek J (2015) Bioconversion of α-pinene by a novel cold-adapted fungus Chrysosporium pannorum. J Ind Microbiol Biotechnol 42(2):181–188

    CAS  PubMed  Google Scholar 

  15. Ashjari M, Mohammadi M, Badri R (2015) Chemical amination of Rhizopus oryzae lipase for multipoint covalent immobilization on epoxy-functionalized supports: modulation of stability and selectivity. J Mol Catal B: Enzym 115:128–134

    CAS  Google Scholar 

  16. Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA (2008) Candida antarctica lipase B chemically immobilized on epoxy-activated micro-and nanobeads: catalysts for polyester synthesis. Biomacromol 9(2):463–471

    CAS  Google Scholar 

  17. Li C, Tan T, Zhang H, Feng W (2010) Analysis of the conformational stability and activity of Candida antarctica lipase B in organic solvents insight from molecular dynamics and quantum mechanics/simulations. J Biol Chem 285(37):28434–28441

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gouet P, Courcelle E, Stuart DI, Métoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15(4):305–308

    CAS  PubMed  Google Scholar 

  19. Wang W-f, Li T, Qin X-l, Ning Z-x, Yang B, Wang Y-h (2012) Production of lipase SMG1 and its application in synthesizing diacylglyecrol. J Mol Catal B: Enzym 77:87–91

    CAS  Google Scholar 

  20. Fy D, Tang Xd, Yang Xh, Lin L, Dn He, Wei W, Dz W (2019) Immobilization of a novel ESTBAS esterase from Bacillus altitudinis onto an epoxy resin: characterization and regioselective synthesis of chloramphenicol palmitate. Catalysts 9(7):620

    Google Scholar 

  21. Kumar R, Singh R, Kaur J (2014) Combinatorial reshaping of a lipase structure for thermostability: additive role of surface stabilizing single point mutations. Biochem Biophys Res Commun 447(4):626–632

    CAS  PubMed  Google Scholar 

  22. Acharya P, Rajakumara E, Sankaranarayanan R, Rao NM (2004) Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. J Mol Biol 341(5):1271–1281

    CAS  PubMed  Google Scholar 

  23. Li W, Shi H, Ding H, Wang L, Zhang Y, Li X, Wang F (2018) Characterization of two novel thermostable esterases from Thermoanaerobacterium thermosaccharolyticum protein. Expression Purif 152:64–70

    CAS  Google Scholar 

  24. Gao X, Mao X, Lu P, Secundo F, Xue C, Sun J (2019) Cloning, expression, and characterization of a novel thermostable and alkaline-stable esterase from Stenotrophomonas maltophilia OUC_Est10 catalytically active in organic solvents. Catalysts 9(5):401

    CAS  Google Scholar 

  25. Sal FA, Colak DN, Guler HI, Canakci S, Belduz AO (2019) Biochemical characterization of a novel thermostable feruloyl esterase from Geobacillus thermoglucosidasius DSM 2542 T. Mol Biol Rep 46(4):4385–4395

    Google Scholar 

  26. Guo Y-Y, Yu X-W, Xu Y (2016) Cloning, expression and characterization of two thermostable esterases from Aquifex aeolicus VF5. J Mol Catal B: Enzym 133:S220–S229

    Google Scholar 

  27. Kim J, Deng L, Hong E, Ryu Y (2015) Cloning and characterization of a novel thermostable esterase from Bacillus gelatini KACC 12197. Protein Expr Purif 116:90–97

    CAS  PubMed  Google Scholar 

  28. Alvarez-Macarie E, Augier-Magro V, Baratti J (1999) Characterization of a thermostable esterase activity from the moderate thermophile Bacillus licheniformis. Biosci Biotechnol Biochem 63(11):1865–1870

    CAS  PubMed  Google Scholar 

  29. Kademi A, Aı̈t-Abdelkader N, Fakhreddine L, Baratti JC (2000) Characterization of a new thermostable esterase from the moderate thermophilic bacterium Bacillus circulans. J Mol Catal B: Enzym 10(4):395–401

    CAS  Google Scholar 

  30. Dror A, Shemesh E, Dayan N, Fishman A (2014) Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Appl Environ Microbiol 80(4):1515–1527

    PubMed  PubMed Central  Google Scholar 

  31. Cao H, Nie K, Xu H, Xiong X, Krastev R, Wang F, Tan T, Liu L (2016) Insight into the mechanism behind the activation phenomenon of lipase from Thermus thermophilus HB8 in polar organic solvents. J Mol Catal B: Enzym 133:S400–S409

    Google Scholar 

  32. Yamashiro Y, Sakatoku A, Tanaka D, Nakamura S (2013) A cold-adapted and organic solvent-tolerant lipase from a psychrotrophic bacterium Pseudomonas sp. strain YY31: identification, cloning, and characterization. Appl Biochem Biotechnol 171(4):989–1000

    CAS  PubMed  Google Scholar 

  33. Gao W, Wu K, Chen L, Fan H, Zhao Z, Gao B, Wang H, Wei D (2016) A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavor esters. Microb Cell Fact 15(1):41

    PubMed  PubMed Central  Google Scholar 

  34. Jin P, Pei X, Du P, Yin X, Xiong X, Wu H, Zhou X, Wang Q (2012) Overexpression and characterization of a new organic solvent-tolerant esterase derived from soil metagenomic DNA. Bioresour Technol 116:234–240

    CAS  PubMed  Google Scholar 

  35. Duarte SH, del Peso Hernández GL, Canet A, Benaiges MD, Maugeri F, Valero F (2015) Enzymatic biodiesel synthesis from yeast oil using immobilized recombinant Rhizopus oryzae lipase. Bioresour Technol 183:175–180

    CAS  PubMed  Google Scholar 

  36. Nasaruddin RR, Alam MZ, Jami MS (2013) Enzymatic biodiesel production from sludge palm oil (SPO) using locally produced Candida cylindracea lipase. Afr J Biotechnol 12(31):4966–4974

    CAS  Google Scholar 

  37. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(6817):241–246

    CAS  PubMed  Google Scholar 

  38. Brault G, Shareck F, Hurtubise Y, Lépine F, Doucet N (2014) Short-chain flavor ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase. PLoS ONE. https://doi.org/10.1371/journal.pone.0091872

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cai X-h, Wang W, Lin L, He D-n, Shen Y, Wei W, Wei D-z (2017) Cinnamyl esters synthesis by lipase-catalyzed transesterification in a non-aqueous system. Catal Lett 147(4):946–952

    CAS  Google Scholar 

  40. Lv DS, Xue XT, Wang N, Wu Q, Lin XF (2004) Enzyme catalyzed synthesis of some vinyl drug esters in organic medium. Prep Biochem Biotechnol 34(1):97–107

    PubMed  Google Scholar 

  41. Cao X, Mangas-Sánchez J, Feng F, Adlercreutz P (2016) Acyl migration in enzymatic interesterification of triacylglycerols: effects of lipases from Thermomyces lanuginosus and Rhizopus oryzae, support material, and water activity. Eur J Lipid Sci Technol 118(10):1579–1587

    CAS  Google Scholar 

  42. Puskas JE, Chiang CK, Sen MY (2011) Green cationic polymerizations and polymer functionalization for biotechnology. Green Polym Methods. https://doi.org/10.1002/9783527636167#page=316

    Article  Google Scholar 

  43. Hou C, Zhu H, Li Y, Li Y, Wang X, Zhu W, Zhou R (2015) Facile synthesis of oxidic PEG-modified magnetic polydopamine nanospheres for Candida rugosa lipase immobilization. Appl Microbiol Biotechnol 99(3):1249–1259

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. C31570795), the Shanghai outstanding technical leaders plan 19XD1431800, the National Natural Science Foundation of China (Grant Nos. 81830052, 81530053) and Shanghai Key Laboratory of Molecular Imaging (18DZ2260400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wei or Dongzhi Wei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, F., Lin, L., Wei, W. et al. Facile One-Pot Immobilization of a Novel Esterase and Its Application in Cinnamyl Acetate Synthesis. Catal Lett 150, 2517–2528 (2020). https://doi.org/10.1007/s10562-020-03168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03168-1

Keywords

Navigation