Skip to main content

Advertisement

Log in

Aqueous-Phase Reforming of Glycerol over Carbon-Nanotube-Supported Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Bimetallic Pt–Ni and Cu–Ni composites on multiwalled carbon nanotubes (MWNT) were tested as catalysts for the aqueous-phase reforming of glycerol in a continuous-flow fixed-bed reactor. The catalyst 1Pt–3Ni/MWNT, containing 1 wt% Pt and 3 wt% Ni, performed best, producing 21.2 mmol H2 gcat−1 h−1; however, the noble-metal-free catalyst 1Cu–12Ni/MWNT also performed well, producing 9.94 mmol H2 gcat−1 h−1. Neither of these catalysts produced detectable amounts of CO. Though Cu–Ni catalysts for aqueous-phase reforming have been reported, they have not been tested for uses of > 12 h. We found that 1Cu–12Ni/MWNT maintained its activity throughout a 100-h test and could be reused, though some activity was lost after two uses. Separate tests of the catalysts in the water–gas shift reaction suggested that the selectivity for H2 over CH4 in this reaction was decisive for the corresponding selectivity in aqueous phase reforming over Cu–Ni/MWNT, but not Pt–Ni/MWNT, catalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dunn S (2002) Int J Hydrogen Energy 27:235–264

    CAS  Google Scholar 

  2. Sharaf OZ, Orhan MF (2014) Renew Sustain Energy Rev 32:810–853

    CAS  Google Scholar 

  3. Ogden J (2013) Transition to renewable energy systems. In: Stolten D, Scherer V, (eds.) Wiley, Weinheim, pp 795–811

  4. Ewan BCR, Allen RWK (2005) Int J Hydrogen Energy 30:809–819

    CAS  Google Scholar 

  5. Kırtay E (2011) Energy Convers Manag 52:1778–1789

    Google Scholar 

  6. Holladay JD, Hu J, King DL, Wang Y (2009) Catal Today 139:244–260

    CAS  Google Scholar 

  7. Dincer I, Acar C (2015) Int J Hydrogen Energy 40:11094

    CAS  Google Scholar 

  8. Tanksale A (2010) Renew Sustain Energy Rev 14:166

    CAS  Google Scholar 

  9. Melero JA, Iglesias J, Garcia A (2012) Energy Environ Sci 5:7393–7420

    CAS  Google Scholar 

  10. Zhang YHP (2011) ACS Symp Ser 1067:203–216

    CAS  Google Scholar 

  11. Panagiotopoulou P, Papadopoulou C, Matralis H, Verykios X (2014) Wiley Interdiscip Rev 3:231–253

    CAS  Google Scholar 

  12. Adhikari S, Fernando SD, Haryanto A (2009) Energy Convers Manag 50:2600–2604

    CAS  Google Scholar 

  13. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164–7183

    CAS  Google Scholar 

  14. Ebshish A, Yaakob Z, Taufiq-Yap YH, Bshish A, Tasirin SM (2012) Proc Inst Mech Eng A 226:1060–1075

    CAS  Google Scholar 

  15. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098

    CAS  PubMed  Google Scholar 

  16. Lin Y-C (2013) Int J Hydrogen Energy 38:2678–2700

    CAS  Google Scholar 

  17. Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A (2011) Chem Soc Rev 40:5266–5281

    CAS  PubMed  Google Scholar 

  18. Zhou CH, Zhao H, Tong DS, Wu LM, Yu WH (2013) Catal Rev 55:369–453

    CAS  Google Scholar 

  19. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13–30

    CAS  Google Scholar 

  20. Maglinao RL, He BB (2011) Ind Eng Chem Res 50:6028–6033

    CAS  Google Scholar 

  21. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964–967

    CAS  PubMed  Google Scholar 

  22. Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493–1513

    CAS  Google Scholar 

  23. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) Appl Catal B 56:171–186

    CAS  Google Scholar 

  24. El Doukkali M, Iriondo A, Cambra JF, Arias PL (2014) Top Catal 57:1066–1077

    Google Scholar 

  25. Huber GW, Shabaker JW, Evans ST, Dumesic JA (2006) Appl Catal B 62:226–235

    CAS  Google Scholar 

  26. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang H, Shen J (2007) J Power Sour 165:739–756

    CAS  Google Scholar 

  27. Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA (2003) J Catal 215:344–352

    CAS  Google Scholar 

  28. Shabaker JW, Huber GW, Dumesic JA (2004) J Catal 222:180–191

    CAS  Google Scholar 

  29. Mills GA, Steffgen FW (1974) Catal Rev 8:159–210

    Google Scholar 

  30. Somorjai GA (1981) Catal Rev 23:189–202

    CAS  Google Scholar 

  31. Vannice MA (1975) J Catal 37:449–461

    CAS  Google Scholar 

  32. Vannice MA (1977) J Catal 50:228–236

    CAS  Google Scholar 

  33. Wen G, Xu Y, Ma H, Xu Z, Tian Z (2008) Int J Hydrogen Energy 33:6657–6666

    CAS  Google Scholar 

  34. Rahman MM, Church TL, Minett AI, Harris AT (2013) Chemsuschem 6:1006–1013

    CAS  PubMed  Google Scholar 

  35. Rahman MM, Church TL, Variava MF, Harris AT, Minett AI (2014) RSC Adv 4:18951–18960

    CAS  Google Scholar 

  36. Sinfelt JH (1973) In: Advances in catalysis. In: Eley DD, Paul HP (eds), Academic Press (1973) 23:91–119

  37. Variava MF, Church TL, Noorbehesht N, Harris AT, Minett AI (2015) Catal Sci Technol 5:515–524

    CAS  Google Scholar 

  38. El Doukkali M, Iriondo A, Cambra JF, Gandarias I, Jalowiecki-Duhamel L, Dumeignil F, Arias PL (2014) Appl Catal A 472:80–91

    Google Scholar 

  39. van Haasterecht T, Ludding CCI, de Jong KP, Bitter JH (2014) J Catal 319:27–35

    Google Scholar 

  40. Shabaker JW, Simonetti DA, Cortright RD, Dumesic JA (2005) J Catal 231:67–76

    CAS  Google Scholar 

  41. Tupy SA, Karim AM, Bagia C, Deng W, Huang Y, Vlachos DG, Chen JG (2012) ACS Catal 2:2290–2296

    CAS  Google Scholar 

  42. Iriondo A, Cambra JF, Barrio VL, Guemez MB, Arias PL, Sanchez-Sanchez MC, Navarro RM, Fierro JLG (2011) Appl Catal B 106:83–93

    CAS  Google Scholar 

  43. El Doukkali M, Iriondo A, Arias PL, Requies J, Gandarias I, Jalowiecki-Duhamel L, Dumeignil F (2012) Appl Catal B 125:516–529

    Google Scholar 

  44. Huber GW, Shabaker JW, Dumesic JA (2003) Science 300:2075–2077

    CAS  PubMed  Google Scholar 

  45. Park K-W, Choi J-H, Kwon B-K, Lee S-A, Sung Y-E, Ha H-Y, Hong S-A, Kim H, Wieckowski A (2002) J Phys Chem B 106:1869–1877

    CAS  Google Scholar 

  46. Fu X-Z, Liang Y, Chen S-P, Lin J-D, Liao D-W (2009) Catal Commun 10:1893–1897

    CAS  Google Scholar 

  47. Tegou A, Papadimitriou S, Mintsouli I, Armyanov S, Valova E, Kokkinidis G, Sotiropoulos S (2011) Catal Today 170:126–133

    CAS  Google Scholar 

  48. Grenoble DC, Estadt MM, Ollis DF (1981) J Catal 67:90–102

    CAS  Google Scholar 

  49. Vizcaíno AJ, Carrero A, Calles JA (2007) Int J Hydrogen Energy 32:1450–1461

    Google Scholar 

  50. Huang T-J, Yu T-C, Jhao S-Y (2005) Ind Eng Chem Res 45:150–156

    Google Scholar 

  51. Liao P-H, Yang H-M (2008) Catal Lett 121:274–282

    CAS  Google Scholar 

  52. Manfro RL, Pires TPMD, Ribeiro NFP, Souza MMVM (2013) Catal. Sci Technol 3:1278–1287

    CAS  Google Scholar 

  53. Tuza PV, Manfro RL, Ribeiro NFP, Souza MMVM (2013) Renew Energy 50:408–414

    CAS  Google Scholar 

  54. Chakrabart DJ, Laughlin DE, Chen SW, Chang YA (1991) Desk handbook: phase diagrams for binary alloys. ASM International, Cleveland, pp 85–95

    Google Scholar 

  55. Kim JY, Kim SH, Moon DJ, Kim JH, Park NC, Kim YC (2013) J Nanosci Nanotechnol 13:593–597

    CAS  PubMed  Google Scholar 

  56. Avdeeva LB, Goncharova OV, Kochubey DI, Zaikovskii VI, Plyasova LM, Novgorodov BN, Shaikhutdinov SK (1996) Appl Catal A 141:117–129

    CAS  Google Scholar 

  57. D'Angelo MFN, Ordomskiy V, Schouten JC, van der Schaaf J, Nijhuis TA (2014) Chemsuschem 7:2007–2015

    CAS  Google Scholar 

  58. Kim T-W, Park HJ, Yang Y-C, Jeong S-Y, Kim C-U (2014) Int J Hydrogen Energy 39:11509–11516

    CAS  Google Scholar 

  59. Kaya B, Irmak S, Hasanoglu A, Erbatur O (2014) Int J Hydrogen Energy 39:10135–10140

    CAS  Google Scholar 

  60. Shabaker JW, Huber GW, Davda RR, Cortright RD, Dumesic JA (2003) Catal Lett 88:1–8

    CAS  Google Scholar 

  61. Jeong K-E, Kim H-D, Kim T-W, Kim J-W, Chae H-J, Jeong S-Y, Kim C-U (2014) Catal Today 232:151–157

    CAS  Google Scholar 

  62. de Vlieger DJM, Lefferts L, Seshan K (2014) Green Chem 16:864–874

    Google Scholar 

  63. Wang X, Li N, Webb JA, Pfefferle LD, Haller GL (2010) Appl Catal B 101:21–30

    CAS  Google Scholar 

  64. King DL, Zhang L, Xia G, Karim AM, Heldebrant DJ, Wang X, Peterson T, Wang Y (2010) Appl Catal B 99:206–213

    CAS  Google Scholar 

  65. Wang X, Li N, Pfefferle LD, Haller GL (2009) Catal Today 146:160–165

    CAS  Google Scholar 

  66. Wang X, Li N, Pfefferle LD, Haller GL (2010) J Phys Chem C 114:16996–17002

    CAS  Google Scholar 

  67. Wang X, Li N, Zhang Z, Wang C, Pfefferle LD, Haller GL (2012) ACS Catal 2:1480–1486

    Google Scholar 

  68. He C, Zheng J, Wang K, Lin H, Wang J-Y, Yang Y (2015) Appl Catal B 162:401–411

    CAS  Google Scholar 

  69. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    CAS  Google Scholar 

  70. Ebbesen TW, Hiura H, Bisher ME, Treacy MMJ, Shreeve-Keyer JL, Haushalter RC (1996) Adv Mater 8:155–157

    CAS  Google Scholar 

  71. Yu R, Chen L, Liu Q, Lin J, Tan K-L, Ng SC, Chan HSO, Xu G-Q, Hor TSA (1998) Chem Mater 10:718–722

    CAS  Google Scholar 

  72. Sietsma JRA, Friedrich H, Broersma A, Versluijs-Helder M, Jos van Dillen A, de Jongh PE, de Jong KP (2008) J Catal 260:227–235

    CAS  Google Scholar 

  73. Sietsma JRA, Meeldijk JD, den Breejen JP, Versluijs-Helder M, van Dillen AJ, de Jongh PE, de Jong KP (2007) Angew Chem Int Ed 46:4547–4549

    CAS  Google Scholar 

  74. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380

    CAS  Google Scholar 

  75. Scherrer P (1981) Göttinger Nachr Math Phys 2:98–100

    Google Scholar 

  76. Anderson JR (1975) Structure of metallic catalysts. Academic Press, London

    Google Scholar 

  77. Shyu JZ, Otto K (1989) J Catal 115:16–23

    CAS  Google Scholar 

  78. Kim KS, Winograd N, Davis RE (1971) J Am Chem Soc 93:6296–6297

    CAS  Google Scholar 

  79. Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS (2006) Surf Sci 600:1771–1779

    CAS  Google Scholar 

  80. Boga DA, Oord R, Beale AM, Chung Y-M, Bruijnincx PCA, Weckhuysen BM (2013) ChemCatChem 5:529–537

    CAS  Google Scholar 

  81. Brown R, Cooper ME, Whan DA (1982) Appl Catal 3:177–186

    CAS  Google Scholar 

  82. Landau MV, Savilov SV, Kirikova MN, Cherkasov NB, Ivanov AS, Lunin VV, Koltypin Y, Gedanken A (2011) Mendeleev Commun 21:125–128

    CAS  Google Scholar 

  83. Coq B, Tichit D, Ribet S (2000) J Catal 189:117–128

    CAS  Google Scholar 

  84. Fierro G, Lojacono M, Inversi M, Porta P, Lavecchia R, Cioci F (1994) J Catal 148:709–721

    CAS  Google Scholar 

  85. Delmon B (2008) Handbook of heterogeneous catalysis. Wiley, Noboken

    Google Scholar 

  86. Callister WD (2007) John wiley & Sons, New York 7th ed, Ch. 9, Vil. 1, 184–257

  87. Dussault L, Dupin JC, Guimon C, Monthioux M, Latorre N, Ubieto T, Romeo E, Royo C, Monzón A (2007) J Catal 251:223–232

    CAS  Google Scholar 

  88. Lin J-H, Biswas P, Guliants VV, Misture S (2010) Appl Catal A 387:87–94

    CAS  Google Scholar 

  89. Wawrzetz A, Peng B, Hrabar A, Jentys A, Lemonidou AA, Lercher JA (2010) J Catal 269:411–420

    CAS  Google Scholar 

  90. Steinrück HP, D'Evelyn MP, Madix RJ (1986) Surf Sci 172:L561–L567

    Google Scholar 

  91. Lehnert K, Claus P (2008) Catal Commun 9:2543–2546

    CAS  Google Scholar 

  92. Manfro RL, da Costa AF, Ribeiro NFP, Souza MMVM (2011) Fuel Process Technol 92:330–335

    CAS  Google Scholar 

  93. Porosoff MD, Chen JG (2013) J Catal 301:30–37

    CAS  Google Scholar 

  94. Zhang W, Ge Q, Xu H (2011) Sci Adv Mater 3:1046–1051

    CAS  Google Scholar 

Download references

Acknowledgements

M. M. Rahman is grateful to Chittagong University of Engineering & Technology (CUET) and also to Bangladesh Council for Scientific and Industrial Research (BCSIR) for all types of technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M. Aqueous-Phase Reforming of Glycerol over Carbon-Nanotube-Supported Catalysts. Catal Lett 150, 2674–2687 (2020). https://doi.org/10.1007/s10562-020-03167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03167-2

Keywords

Navigation