Skip to main content

Advertisement

Log in

Efficient Solvent-Free Synthesis of Cyclic Carbonates from the Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by New Imidazolinium Functionalized Metal Complexes Under 0.1 MPa

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of imidazolinium functionalized metal complexes were prepared as efficient and recyclable homogeneous catalysts for the synthesis of cyclic carbonates via the coupling reaction of carbon dioxide and epoxides in the absence of co-catalysts and solvent. Due to the synergistic effect between the metal center as Lewis acid and the imidazolinium groups with halide anions as Lewis base, these catalysts exhibited excellent catalytic capability. Particularly, high turnover frequency (TOF) values of (1174, 1240 and 1262 h−1) for bifunctional catalysts (2c, 2i and 2j, respectively) were achieved via adjusting reaction parameters. These catalysts also showed excellent catalytic performances under atmospheric pressure. Recyclability test showed that this kind of bifunctional catalyst can be easily recovered and reused for at least five times without dramatic loss of activity and selectivity. The optimum reaction conditions were also screened as (120 °C, 1.0 MPa CO2 and 2 h). The catalyst could also be applied to a variety of substrates and be used for a long time with high catalytic activities. We also performed the Kinetic studies, which suggested that the activity of catalysts following the order I > Br > Cl. Moreover, a plausible reaction mechanism by imidazolinium functionalized metal complexes was proposed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3.

Similar content being viewed by others

References

  1. Liu XF, Li XY, Qiao C, Fu HC, He LN (2017) Angew Chem Int Ed 56:7425–7429

    CAS  Google Scholar 

  2. Ng CK, Toh RW, Lin TT, Luo HH, Hor TSA, Wu J (2019) Chem Sci 10:1549–1554

    CAS  PubMed  Google Scholar 

  3. Rostami A, Mahmoodabadi M, Ebrahimi AH, Khosravi H, Al-Harrasi A (2018) Chem Sus Chem 11:4262–4268

    CAS  Google Scholar 

  4. Peng J, Wang S, Yang HJ, Ban BR, Wei ZD, Wang LH, Lei B (2018) Fuel 224:481–488

    CAS  Google Scholar 

  5. Liu MS, Gao KQ, Liang L, Wang FX, Shi L, Sheng L, Sun JM (2015) Chem Chem Phys 17:5959–5965

    CAS  Google Scholar 

  6. Ma Y, Zhang Y, Chen C, Zhang JS, Fan BW, Wang TF, Ren TG, Wang L, Zhang JL (2018) Ind Eng Chem Res 57:13342–13352

    CAS  Google Scholar 

  7. Su Q, Sun J, Wang JQ, Yang ZF, Cheng WG, Zhang SJ (2014) Catal Sci Technol 4:1556–1562

    CAS  Google Scholar 

  8. Ma DX, Liu K, Li J, Shi Z (2018) ACS Sustain Chem Eng 6:15050–15055

    CAS  Google Scholar 

  9. Wang S, Peng J, Yang HJ, Ban BR, Wang LH, Lei B, Guo CY, Hu J, Zhu JJ, Han BX (2019) J Nanosci Nanotechnol 19:3263–3268

    CAS  PubMed  Google Scholar 

  10. Peng J, Wang S, Yang HJ, Ban BR, Wei ZD, Wang LH, Lei B (2019) Catal Today 330:76–84

    CAS  Google Scholar 

  11. Dai W, Jin B, Luo SL, Luo X, Tu X, Au CT (2014) Catal Sci Technol 4:556–562

    CAS  Google Scholar 

  12. Liu MS, Wang X, Jiang YC, Sun JM, Arai M (2019) Catal Rev 61(2):214–269

    CAS  Google Scholar 

  13. Liu MS, Lan JW, Liang L, Sun JM, Arai M (2017) J Catal 347:138–147

    CAS  Google Scholar 

  14. Shi LJ, Xu SB, Zhang QR, Liu TT, Wei BH, Zhao YF, Meng LX, Li J (2018) Ind Eng Chem Res 57:15319–15328

    CAS  Google Scholar 

  15. Peng J, Yang HJ, Wei ZD, Guo CY (2015) RSC Adv 5:53063–53072

    CAS  Google Scholar 

  16. Maina JW, Pozo-Gonzalo C, Kong L, Schütz J, Hill M, Dumée LF (2017) Mater Horiz 4:345–361

    CAS  Google Scholar 

  17. Kumar S, Wani MY, Arranja CT, Silva JA, Avula B, Sobral AJFN (2015) J Mater Chem A 3:19615–19637

    CAS  Google Scholar 

  18. Peng J, Geng YC, Yang HJ, He W, Wei ZD, Yang JK, Guo CY (2017) Mol Catal 432:37–46

    CAS  Google Scholar 

  19. Chaugule AA, Tamboli AH, Kim H (2017) Fuel 200:316–332

    CAS  Google Scholar 

  20. Yang HJ, Song NN, Huang HL, Jin YM, Peng J, Yang HW (2015) J South-Central Univ Nationalities (Nat Sci Ed) 34:6–9

    CAS  Google Scholar 

  21. Bobbink FD, Dyson PJ (2016) J Catal 343:52–61

    CAS  Google Scholar 

  22. Zhang J, Sun J, Zhang X, Zhao Y, Zhang SJ (2011) Gas Sci Technol 1:142–159

    CAS  Google Scholar 

  23. Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kühn FE (2015) Chemsuschem 8:2436–2454

    CAS  PubMed  Google Scholar 

  24. Fiorani G, Guo WS, Kleij AW (2015) Green Chem 17:1375–1389

    CAS  Google Scholar 

  25. Zhou H, Lu XB (2017) Sci China Chem 60:904–911

    CAS  Google Scholar 

  26. Büttner H, Longwitz L, Steinbauer J, Wulf C, Werner T (2017) Top Curr Chem 375:50–56

    Google Scholar 

  27. Liu C, Ye YF, Jiang ZM, Xu P, Zhang JX, Sun JM (2019) Ind Eng Chem Res 58:872–878

    CAS  Google Scholar 

  28. Lan D, Fan N, Wang Y, Gao X, Zhang P, Chen L, Au CY, Yin SF (2016) Chin J Catal 37:826–845

    CAS  Google Scholar 

  29. Peng J, Yang HJ, Song NN, Guo CY (2015) J CO2 Util 9:16–22

    CAS  Google Scholar 

  30. Alves M, Grignard B, Mereau R, Jerome C, Tassaing T, Detrembleur C (2017) Catal Sci Technol 7:2651–2684

    CAS  Google Scholar 

  31. Wang M, Ma R, He LN (2016) Sci China Chem 59:507–516

    CAS  Google Scholar 

  32. Peng J, Yang HJ, Geng YC, Wei ZD, Wang LH, Guo CY (2017) J CO2 Util 17:243–255

    CAS  Google Scholar 

  33. Decortes A, Castilla AM, Kleij AW (2010) Angew Chem Int Ed 49:9822–9837

    CAS  Google Scholar 

  34. Comerford JW, Ingram IDV, North M, Wu X (2015) Green Chem 17:1966–1987

    CAS  Google Scholar 

  35. Yang HJ, Zhang Q, Bai Y, Yu P, Hu J (2019) J Xuzhou Institute Tech (Nat Sci Ed) 34(3):15–20

    Google Scholar 

  36. Maeda C, Taniguchi T (2015) Ogawa, Ema KT. Angew Chem Int Ed 54:134–138

    CAS  Google Scholar 

  37. Chen Y, Qiu RH, Xu XH, Au CT, Yin SF (2014) RSC Adv 4:11907–11918

    CAS  Google Scholar 

  38. Song QW, Zhou ZH, He LN (2017) Green Chem 19:3707–3728

    CAS  Google Scholar 

  39. Peng J, Yang HJ, Wang S, Ban BR, Wei ZD, Lei B, Guo CY (2018) J CO2 Util 24:1–9

    CAS  Google Scholar 

  40. Razali NAM, Lee KT, Bhatia S, Mohamed AR (2012) Renew Sust Energ Rev 16:4951–4964

    CAS  Google Scholar 

  41. Dibenedetto A, Angelini A, Stufano P (2014) J Chem Technol Biotechnol 89:334–353

    CAS  Google Scholar 

  42. Zhu MQ, Carreon MA (2014) J Appl Polym Sci 131:39738–39751

    Google Scholar 

  43. Kim DW, Roshan R, Tharun J, Cherian A, Park DW (2013) Korean. J Chem Eng 30:1973–1984

    CAS  Google Scholar 

  44. Luo R, Zhang W, Yang Z, Zhou X, Ji HB (2017) J CO2 Util 19:257–265

    CAS  Google Scholar 

  45. Luo R, Chen Y, He Q, Lin X, Xu Q, He X, Zhang W, Zhou X, Ji HB (2017) Chemsuschem 10:1526–1533

    CAS  PubMed  Google Scholar 

  46. Zanon A, Chaemchuen S, Mousavi B, Verpoort F (2017) J CO2 Util 20:282–291

    CAS  Google Scholar 

  47. Babu R, Kathalikkattil AC, Roshan R, Tharun J, Kim DW, Park DW (2016) Green Chem 18:232–242

    Google Scholar 

  48. Wani MY, Kumar S, Arranja CT, Dias CMF, Sobral AJFN (2016) New J Chem 40:4974–4980

    CAS  Google Scholar 

  49. Lang X, Yu Y, He LN (2016) J Mol Catal A: Chem 420:208–215

    CAS  Google Scholar 

  50. Zhang W, Luo R, Xu Q, Chen Y, Lin X, Zhou X, Ji HB (2017) Chin J Catal 38:736–744

    CAS  Google Scholar 

  51. Castro-Osma JA, North M, Wu X (2016) Chem Eur J 22:2100–2107

    CAS  PubMed  Google Scholar 

  52. Li K, Wu X, Gu Q, Zhao XG, Yuan M, Ma W, Ni W, Hou ZS (2017) RSC Adv 10:14721–14732

    Google Scholar 

  53. Byun YM, Lee JM, Ryu JY, Go MJ, Na KS, Kim Y, Lee J (2018) Polyhedron 141:191–197

    CAS  Google Scholar 

  54. Luo R, Zhou X, Chen S, Li Y, Zhou L, Ji HB (2014) Green Chem 16:1496–1506

    CAS  Google Scholar 

  55. Sun Y, Zhang W, Hu X, Li HR (2010) J Phys Chem B 114:4862–4869

    CAS  Google Scholar 

  56. Nielsen LPC, Stevenson CP, Blackmond DG, Jacobsen EN (2004) J Am Chem Soc 126:1360–1362

    CAS  PubMed  Google Scholar 

  57. Wu GP, Wei SH, Ren WM, Lu XB, Xu TQ, Darensbourg DJ (2011) J Am Chem Soc 133:15191–15199

    CAS  PubMed  Google Scholar 

  58. Liu MS, Gao KQ, Liang L, Sun JM, Sheng L, Arai M (2016) Catal Sci Technol 6:6406–6416

    CAS  Google Scholar 

  59. Gao J, Song QW, He LN, Liu C, Yang Z, Han X, Li X, Song Q (2012) Tetrahedron 68:3835–3842

    CAS  Google Scholar 

  60. Wei R, Zhang X, Du B, Fan Z, Qi GR (2013) RSC Adv 3:17307–17313

    CAS  Google Scholar 

  61. Song J, Zhang B, Zhang P, Ma J, Liu J, Fan H, Jiang T, Han BX (2012) Catal Today 183:130–135

    CAS  Google Scholar 

  62. Yang HJ, Bai Y, Zhou L, Zhang Q, Yu P (2019) J South-Central Univ Nationalities (Nat Sci Ed) 38(4):487–491

    Google Scholar 

  63. Xie Y, Zhang Z, Jiang T, He J, Han BX, Wu T, Ding KL (2007) Angew Chem Int Ed 46:7255–7258

    CAS  Google Scholar 

  64. Xiao LF, Li F, Peng J, Xia CG (2006) J Mol Catal A Chem 253:265–269

    CAS  Google Scholar 

  65. Sun J, Cheng W, Fan W, Wang Y, Meng Z, Zhang SJ (2009) Catal Today 148:361–367

    CAS  Google Scholar 

  66. Ulusoy M, Çetinkaya E, Çetinkaya B (2009) Appl Organomet Chem 23:68–74

    CAS  Google Scholar 

  67. Yao R, Wang H, Han J (2012) Front Chem Sci Eng 6:239–245

    CAS  Google Scholar 

  68. Watile RA, Deshmukh KM, Dhake KP, Bhanage BM (2012) Catal Sci Technol 2:1051–1055

    CAS  Google Scholar 

  69. Wang JQ, Song W, Yi G, Zhang YG (2015) Chem Commun 51:12076–12079

    CAS  Google Scholar 

  70. Zhang W, Wang Q, Wu H, Wu P, He M (2014) Green Chem 16:4767–4774

    CAS  Google Scholar 

  71. Bivona LA, Fichera O, Fusaro L, Giacalone F, Buaki-Sogo M, Gruttadauria M, Aprile C (2015) Catal Sci Technol 5:5000–5007

    CAS  Google Scholar 

  72. Tharun J, Mathai G, Roshan R, Kathalikkattil AC, Bomi K, Park DW (2013) Phys Chem Chem Phys 15:9029–9033

    CAS  PubMed  Google Scholar 

  73. Sankar M, Ajithkumar TG, Sankar G, Manikandan P (2015) Catal Commun 59:201–205

    CAS  Google Scholar 

  74. Chen W, Zhong L, Peng X, Sun R, Lu FC (2015) ACS Sustainable Chem Eng 3:147–152

    CAS  Google Scholar 

  75. Supasitmongkol S, Styring P (2014) Catal Sci Technol 4:1622–1630

    CAS  Google Scholar 

  76. Liu M, Liang L, Li X, Gao X, Sun JM (2016) Green Chem 18:2851–2863

    CAS  Google Scholar 

  77. Jiang X, Gou F, Chen F, Jing HW (2016) Green Chem 18:3567–3576

    CAS  Google Scholar 

  78. Ma T, Qiao SZ (2014) ACS Catal 4:3847–3855

    CAS  Google Scholar 

  79. Hu J, Ma J, Zhu Q, Qian Q, Han H, Mei Q, Han BX (2016) Green Chem 18:382–385

    CAS  Google Scholar 

  80. Roshan KR, Kathalikkattil AC, Tharun J, Kim DW, Won YS, Park DW (2014) Dalton Trans 43:2023–2031

    CAS  PubMed  Google Scholar 

  81. Victor O, Suela K, Basudeb SH (2018) Energy 165:867–876

    Google Scholar 

  82. Taherimehr M, Decortes A, Al-Amsyar SM, Lueangchaichaweng W, Whiteoak CJ, Escudero-Adán EC, Kleij AW, Pescarmona PP (2012) Catal Sci Technol 2:2231–2237

    CAS  Google Scholar 

  83. Kathalikkattil AC, Roshan R, Tharun J, Soek H, Ryu HS, Park DW (2014) Chem Cat Chem 6:284–322

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge gratefully the financial support from National Natural Science Foundation of China (No. 51073175), Natural Science Foundation of Hubei province, P. R China (No. 2016CKB704) and the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (CZT19002). Authors are also grateful to the financial support of Beijing National Laboratory for Molecular Sciences (BNLMS201827).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Jian Yang or Junjiang Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yu, P., Lei, B. et al. Efficient Solvent-Free Synthesis of Cyclic Carbonates from the Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by New Imidazolinium Functionalized Metal Complexes Under 0.1 MPa. Catal Lett 150, 2537–2548 (2020). https://doi.org/10.1007/s10562-020-03163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03163-6

Keywords

Navigation