Skip to main content

Advertisement

Log in

Sulfur Doped Carbon-Rich g-C3N4 for Enhanced Photocatalytic H2 Evolution: Morphology and Crystallinity Effect

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Molecular design for the intercalation of S and C in the framework of g-C3N4 is a promising strategy to increase visible light harvesting and facilitate the separation of photoinduced electron/hole pairs. Herein, we reported a facial method to prepare porous S doped g-C3N4 nanotubes by thermal polymerization of urea and 2-thiobarbituric acid. The obtained catalysts contain certain carbon and sulfur atoms in the aromatic rings substituting the nitrogen atoms in g-C3N4, which narrows down the band gap, and increases the separation of photoinduced charge carriers. Meanwhile, nanotube formation increases the specific surface area of catalyst. The synergistic effect of S doped carbon rich g-C3N4 and nanostructure forming results in superior photocatalytic H2 evolution from water splitting. The study shows that the photocatalytic H2 evolution is correlated with the crystallinity of S doped g-C3N4.

Graphic Abstract

Schematic illustration for framework of 0.3S-CN and its photocatalytic hydrogen evolution mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goettmann F, Thomas A, Antonietti M (2007) Metal-free activation CO2 by mesoporous graphitic carbon nitride. Angew Chem Int Edit 46:2717–2720

    CAS  Google Scholar 

  2. Goettmann F, Fischer A, Antonietti M, Thomas A (2006) Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew Chem Int Edit 45:4467–4471

    CAS  Google Scholar 

  3. Ruan LW, Qiu LG, Zhu YJ, Lu YX (2014) Analysis of electrical and optical properties of g-C3N4 with carbon-position doping. Acta Phys-Chim Sin 30:43–52

    CAS  Google Scholar 

  4. Guo LT, Cai YY, Ge JM, Zhang YN, Gong LH, Li XH, Wang KX, Ren QZ, Su J, Chen JS (2015) Multifunctional Au-Co@CN nanocatalyst for highly efficient hydrolysis of ammonia borane. ACS Catal 5:388–392

    CAS  Google Scholar 

  5. Datta KKR, Reddy BVS, Ariga K, Vinu A (2010) Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. Angew Chem Int Edit 49:5961–5965

    CAS  Google Scholar 

  6. Li XH, Wang XC, Antonietti M (2012) Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem Sci 3:2170–2174

    CAS  Google Scholar 

  7. Zhu YP, Ren TZ, Ma TY, Yuan ZY (2014) Hierarchical structures from inorganic nanocrystal self-assembly for photoenergy utilization. Int J Photoenergy 3:1256–1271

    Google Scholar 

  8. Akbayrak S, Ozkar S (2012) Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane. ACS Appl Mater Interfaces 4:6302–6310

    CAS  PubMed  Google Scholar 

  9. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    CAS  PubMed  Google Scholar 

  10. Zheng HR, Zhang JS, Wang XC, Fu XZ (2012) Modification of carbon nitride photocatalysts by copolymerization with diaminomaleonitrile. Acta Phys-Chim Sin 28:2336–2342

    CAS  Google Scholar 

  11. Zuluaga S, Liu LH, Shafiq N, Rupich SM, Veyan JF, Chabal YJ, Thonhauser T (2015) Structural band-gap tuning in g-C3N4. Phys Chem Chem Phys 17:957–962

    CAS  PubMed  Google Scholar 

  12. Wang H, Yuan XZ, Wang H, Chen XH, Wu ZB, Jiang LB, Xiong WP, Zhang YX, Zeng GM (2015) One-step calcination method for synthesis of mesoporous g-C3N4/NiTiO3 heterostructure photocatalyst with improved visible light photoactivity. RSC Adv 5:95643–95648

    CAS  Google Scholar 

  13. Stolbov S, Zuluaga S (2013) Sulfur doping effects on the electronic and geometric structures of graphitic carbon nitride photocatalyst: insights from first principles. J Phys-Condens Mat 25:7

    Google Scholar 

  14. Zhou YJ, Zhang LX, Liu JJ, Fan XQ, Wang BZ, Wang M, Ren WC, Wang J, Li ML, Shi JL (2015) Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J Mater Chem A 3:3862–3867

    CAS  Google Scholar 

  15. Cao SH, Fan B, Feng YC, Chen H, Jiang F, Wang X (2018) Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. Chem Eng J 353:147–156

    CAS  Google Scholar 

  16. Dong GH, Zhao K, Zhang LZ (2012) Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem Commun 48:6178–6180

    CAS  Google Scholar 

  17. Yan SC, Li ZS, Zou ZG (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901

    CAS  PubMed  Google Scholar 

  18. Shi L, Liang L, Wang FX, Liu MS, Zhong SF, Sun JM (2015) Tetraethylorthosilicate induced preparation of mesoporous graphitic carbon nitride with improved visible light photocatalytic activity. Catal Commun 59:131–135

    CAS  Google Scholar 

  19. Lin QY, Li L, Liang SJ, Liu MH, Bi JH, Wu L (2015) Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl Catal B 163:135–142

    CAS  Google Scholar 

  20. Li J, Cheng SS, Du TX, Shang NZ, Gao ST, Feng C, Wang C, Wang Z (2018) Pd anchored on C3N4 nanosheets/reduced graphene oxide: an efficient catalyst for the transfer hydrogenation of alkenes. New J Chem 42:9324–9331

    CAS  Google Scholar 

  21. Dou HL, Long D, Zheng SH, Zhang YP (2018) A facile approach to synthesize graphitic carbon nitride microwires for enhanced photocatalytic H2 evolution from water splitting under full solar spectrum. Catal Sci Technol 8:3599–3609

    CAS  Google Scholar 

  22. Liu Y, Yuan XZ, Wang H, Chen XH, Gu SS, Jiang Q, Wu ZB, Jiang LB, Wu Y, Zeng GM (2015) Novel visible light-induced g-C3N4-Sb2S3/Sb4O5Cl2 composite photocatalysts for efficient degradation of methyl orange. Catal Commun 70:17–20

    CAS  Google Scholar 

  23. Wang JJ, Tang L, Zeng GM, Liu YN, Zhou YY, Deng YC, Wang JJ, Peng B (2017) Plasmonic Bi metal deposition and g-C3N4 coating on Bi2WO6 microspheres for efficient visible-light photocatalysis. ACS Sustainable Chem Eng 5:1062–1072

    CAS  Google Scholar 

  24. Munoz-Batista MJ, Fontelles-Carceller O, Ferrer M, Fernandez-Garcia M, Kubacka A (2016) Disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light illumination. Appl Catal B 183:86–95

    CAS  Google Scholar 

  25. Majeed I, Manzoor U, Kanodarwala FK, Nadeem MA, Hussain E, Ali H, Badshah A, Stride JA, Nadeem MA (2018) Pd-Ag decorated g-C3N4 as an efficient photocatalyst for hydrogen production from water under direct solar light irradiation. Catal Sci Technol 8:1183–1193

    CAS  Google Scholar 

  26. Dou HL, Zheng SH, Zhang YP (2018) The effect of metallic Fe(II) and nonmetallic S codoping on the photocatalytic performance of graphitic carbon nitride. RSC Adv 8:7558–7568

    CAS  Google Scholar 

  27. Yang Y, Zhang C, Huang D, Zeng G, Huang J, Lai C, Zhou C, Wang W, Guo H, Xue W, Deng R, Cheng M, Xiong W (2019) Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl Catal B Environ 245:87–99

    CAS  Google Scholar 

  28. Li JQ, Yuan H, Zhu ZF (2016) Improved photoelectrochemical performance of Z-scheme g-C3N4/Bi2O3/BiPO4 heterostructure and degradation property. Appl Surf Sci 385:34–41

    CAS  Google Scholar 

  29. Zhou L, Zhang W, Chen L, Deng HP (2017) Z-scheme mechanism of photogenerated carriers for hybrid photocatalyst Ag3PO4/g-C3N4 in degradation of sulfamethoxazole. J Colloid Interface Sci 487:410–417

    CAS  PubMed  Google Scholar 

  30. Yu S, Yun HJ, Kim YH, Yi J (2014) Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation. Appl Catal B 144:893–899

    CAS  Google Scholar 

  31. Zhu YP, Ren TZ, Yuana ZY (2015) Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl Mater Interfaces 7:16850–16856

    CAS  PubMed  Google Scholar 

  32. Zhang YJ, Mori T, Ye JH, Antonietti M (2010) Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J Am Chem Soc 132:6294–6300

    CAS  PubMed  Google Scholar 

  33. Zhang LG, Chen XF, Guan J, Jiang YJ, Hou TG, Mu XD (2013) Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity. Mater Res Bull 48:3485–3491

    CAS  Google Scholar 

  34. Wang Y, Di Y, Antonietti M, Li HR, Chen XF, Wang XC (2010) Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem Mater 22:5119–5121

    CAS  Google Scholar 

  35. Zhang Y, Antonietti M (2010) Photocurrent generation by polymeric carbon nitride solids: an initial step towards a novel photovoltaic system. Chem Asian J 5:1307–1311

    CAS  PubMed  Google Scholar 

  36. Liu G, Niu P, Sun CH, Smith SC, Chen ZG, Lu GQ, Cheng HM (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648

    CAS  PubMed  Google Scholar 

  37. Zhang JS, Sun JH, Maeda K, Domen K, Liu P, Antonietti M, Fu XZ, Wang XC (2011) Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ Sci 4:675–678

    CAS  Google Scholar 

  38. Hong JD, Xia XY, Wang YS, Xu R (2012) Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem 22:15006–15012

    CAS  Google Scholar 

  39. Li X, Qu Y, Wang G (2018) One-dimensional carbon self-doping g-C3N4 nanotubes: synthesis and application in dye-sensitized solar cells. Nano Res 11:1322–1330

    CAS  Google Scholar 

  40. Wang K, Li Q, Liu BS, Cheng B, Ho WK, Yu JG (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B 176:44–52

    Google Scholar 

  41. Hamrin K, Johansson G, Fahlman A, Nordling C, Siegbahn K, Lindberg B (1968) Structure studies of sulphur compounds by ESCA. Chem Phys Lett 1:557–559

    CAS  Google Scholar 

  42. Chang YQ, Hong F, He CX, Zhang QL, Liu JH (2013) Nitrogen and sulfur dual-doped non-noble catalyst using fluidic acrylonitrile telomer as precursor for efficient oxygen reduction. Adv Mater 25:4794–4799

    CAS  PubMed  Google Scholar 

  43. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    CAS  PubMed  Google Scholar 

  44. Wang JP, Xu H, Qian XF, Dong YY, Gao JK, Qian GD, Yao JM (2015) Direct synthesis of porous nanorod-type graphitic carbon nitride/CuO composite from Cu-melamine supramolecular framework towards enhanced photocatalytic performance. Chem Asian J 10:1276–1280

    CAS  PubMed  Google Scholar 

  45. Kumar S, Baruah A, Tonda S, Kumar B, Shanker V, Sreedhar B (2014) Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale 6:4830–4842

    CAS  PubMed  Google Scholar 

  46. Dou HL, Zheng SH, Zhang YP (2018) Graphitic carbon nitride with S and Fe(III) codoping for improved photodegradation performance. Catal Lett 148:601–611

    CAS  Google Scholar 

  47. Kong HJ, Won DH, Kim J, Woo SI (2016) Sulfur-doped g-C3N4/BiVO4 composite photocatalyst for water oxidation under visible light. Chem Mater 28:1318–1324

    CAS  Google Scholar 

  48. Kou JH, Li ZS, Yuan YP, Zhang HT, Wang Y, Zou ZG (2009) Visible-light-induced photocatalytic oxidation of polycyclic aromatic hydrocarbons over tantalum oxynitride photocatalysts. Environ Sci Technol 43:2919–2924

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (51801164), Fundamental Research Funds for Central Universities (XDJK2020C005), Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2018080).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Xi Rao or Yongping Zhang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 907 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, D., Wang, L., Cai, H. et al. Sulfur Doped Carbon-Rich g-C3N4 for Enhanced Photocatalytic H2 Evolution: Morphology and Crystallinity Effect. Catal Lett 150, 2487–2496 (2020). https://doi.org/10.1007/s10562-020-03156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03156-5

Keywords

Navigation