Skip to main content
Log in

Fe-Doped Mesoporous Alumina: Facile One-Pot Synthesis, Modified Surface-Acidity and Its Enhanced Catalytic Performance in Phenol Hydroxylation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Fe-doped mesoporous alumina (MA) was successfully synthesized via a facile one-pot synthesis method. The resulting Fe-doped MA samples possess typical mesoporous structure, relatively high BET surface area, and narrowed pore size diameter. Besides, the iron species are well-dispersed in the alumina matrix, and more importantly, some small oligonuclear iron oxide clusters are linked on the surface of alumina, leading to the elimination of strong acid sites. The reaction of phenol hydroxylation was preceded at room temperature for 2 h. The introduction of mesoporous structure in alumina would be favorable for the adsorption and diffusion process of reactant and product molecules, and also the well-dispersed iron species in alumina matrix and large amount of acid sites stimulate more active hydroxyl radicals which are greatly beneficial for the catalytic process, especially the elimination of strong acid sites would inhibit the over-oxidation reaction. In this case, the sample of 5Fe–MA displays the best catalytic performance especially with the extremely high dihydroxybenzene selectivity of 93.2%, and the good catalytic stability is also evidenced by the five times recycling tests.

Graphic Abstract

In this work, the Fe-doped mesoporous alumina (MA) was successfully prepared. The iron species are well-dispersed in the alumina matrix, and some small oligonuclear iron oxide clusters are linked on the surface of alumina, leading to the elimination of strong acid sites. The advanced properties of mesoporous structure, well-dispersed metal active centers and lack of strong acid sites in Fe-doped MA are greatly beneficial for the catalytic process, especially for the dihydroxybenzene selectivity with extremely high value of 93.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Scheme 3
Fig. 7

Similar content being viewed by others

References

  1. Abbo HS, Titinchi SJJ (2012) Appl Catal A 435–436:148. https://doi.org/10.1016/j.apcata.2012.05.048

    Article  CAS  Google Scholar 

  2. Pithakratanayothin S, Tongsri R, Chaisuwan T, Wongkasemjit S (2017) Catal Sci Technol 7:5413. https://doi.org/10.1039/C7CY00655A

    Article  CAS  Google Scholar 

  3. Zhao Y, He G, Dai W, Chen H (2014) Ind Eng Chem Res 53:12566. https://doi.org/10.1021/ie501624u

    Article  CAS  Google Scholar 

  4. Suresh S, Srivastava VC, Mishra IM (2012) Int J Energy Environ Eng 3:32. https://doi.org/10.1186/2251-6832-3-32

    Article  Google Scholar 

  5. Shi F, Mu L, Yu P, Hu J, Zhang L (2014) J Mol Catal A 391:66. https://doi.org/10.1016/j.molcata.2014.04.006

    Article  CAS  Google Scholar 

  6. Xu J, Ibrahim A-R, Hu X et al (2016) Microporous Mesoporous Mater 231:1. https://doi.org/10.1016/j.micromeso.2016.05.015

    Article  CAS  Google Scholar 

  7. Abbo HS, Titinchi SJJ (2010) Top Catal 53:254. https://doi.org/10.1007/s11244-009-9408-9

    Article  CAS  Google Scholar 

  8. Wang J, Park J-N, Jeong H-C et al (2004) Energy Fuels 18:470. https://doi.org/10.1021/ef0300904

    Article  CAS  Google Scholar 

  9. Zuo Y, Song W, Dai C et al (2013) Appl Catal A 453:272. https://doi.org/10.1016/j.apcata.2012.12.027

    Article  CAS  Google Scholar 

  10. Xia C, Long L, Zhu B, Lin M, Shu X (2016) Catal Commun 80:49. https://doi.org/10.1016/j.catcom.2016.03.011

    Article  CAS  Google Scholar 

  11. He Z, Wu J, Gao B, He H (2015) ACS Appl Mater Interfaces 7:2424. https://doi.org/10.1021/am507134g

    Article  CAS  PubMed  Google Scholar 

  12. Zhou S, Shao B, Jin W et al (2019) Appl Catal A 575:159. https://doi.org/10.1016/j.apcata.2019.02.022

    Article  CAS  Google Scholar 

  13. Li W, Cao C-Y, Wu L-Y, Ge M-F, Song W-G (2011) J Hazard Mater 198:143. https://doi.org/10.1016/j.jhazmat.2011.10.025

    Article  CAS  PubMed  Google Scholar 

  14. Badoga S, Sharma RV, Dalai AK, Adjaye J (2015) Appl Catal A 489:86. https://doi.org/10.1016/j.apcata.2014.10.008

    Article  CAS  Google Scholar 

  15. Xu L, Wang F, Chen M et al (2016) ChemCatChem 8:2536. https://doi.org/10.1002/cctc.201600472

    Article  CAS  Google Scholar 

  16. Ma Y, Zeng M, He J et al (2011) Appl Catal A 396:123. https://doi.org/10.1016/j.apcata.2011.02.001

    Article  CAS  Google Scholar 

  17. Seki T, Ikeda S, Onaka M (2006) Microporous Mesoporous Mater 96:121. https://doi.org/10.1016/j.micromeso.2006.06.026

    Article  CAS  Google Scholar 

  18. Abidli A, Hamoudi S, Belkacemi K (2015) Dalton Trans 44:9823. https://doi.org/10.1039/C4DT03630A

    Article  CAS  PubMed  Google Scholar 

  19. Morris SM, Fulvio PF, Jaroniec M (2008) J Am Chem Soc 130:15210. https://doi.org/10.1021/ja806429q

    Article  CAS  PubMed  Google Scholar 

  20. Fu L, Yang H (2014) J Phys Chem C 118:14299. https://doi.org/10.1021/jp502204h

    Article  CAS  Google Scholar 

  21. Selli E, Rossetti I, Meloni D, Sini F, Forni L (2004) Appl Catal A 262:131. https://doi.org/10.1016/j.apcata.2003.11.016

    Article  CAS  Google Scholar 

  22. Maurya MR, Titinchi SJJ, Chand S, Mishra IM (2002) J Mol Catal A 180:201. https://doi.org/10.1016/S1381-1169(01)00435-6

    Article  CAS  Google Scholar 

  23. Cai W, Yu J, Anand C, Vinu A, Jaroniec M (2011) Chem Mater 23:1147. https://doi.org/10.1021/cm102512v

    Article  CAS  Google Scholar 

  24. Zhou S, Jin W, Ding Y et al (2018) Dalton Trans 47:16862. https://doi.org/10.1039/C8DT03054E

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Feng Z, Lian Y et al (2005) Microporous Mesoporous Mater 84:41. https://doi.org/10.1016/j.micromeso.2005.05.021

    Article  CAS  Google Scholar 

  26. Hensen EJM, Zhu Q, Hendrix MMRM et al (2004) J Catal 221:560. https://doi.org/10.1016/j.jcat.2003.09.024

    Article  CAS  Google Scholar 

  27. Gao S, Zhou S, Yang F, Long S, Kong Y (2016) ChemistrySelect 1:1305. https://doi.org/10.1002/slct.201600184

    Article  CAS  Google Scholar 

  28. Long S, Zhou S, Yang F, Lu K, Xi T, Kong Y (2016) RSC Adv 6:76064. https://doi.org/10.1039/C6RA13146H

    Article  CAS  Google Scholar 

  29. He S, Sun C, Bai Z, Dai X, Wang B (2009) Appl Catal A 356:88. https://doi.org/10.1016/j.apcata.2008.12.024

    Article  CAS  Google Scholar 

  30. Zou J-J, Liu Y, Pan L, Wang L, Zhang X (2010) Appl Catal B 95:439. https://doi.org/10.1016/j.apcatb.2010.01.024

    Article  CAS  Google Scholar 

  31. Yamashita T, Hayes P (2008) Appl Surf Sci 254:2441. https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  32. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Surf Interface Anal 36:1564. https://doi.org/10.1002/sia.1984

    Article  CAS  Google Scholar 

  33. Liu C, Shan Y, Yang X, Ye X, Wu Y (1997) J Catal 168:35. https://doi.org/10.1006/jcat.1997.1612

    Article  CAS  Google Scholar 

  34. Xin H, Liu J, Fan F et al (2008) Microporous Mesoporous Mater 113:231. https://doi.org/10.1016/j.micromeso.2007.11.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Nature Science Foundation of China (51673040), the Natural Science Foundation of Jiangsu Province (BK20180366, BK20171357), the Fundamental Research Funds for the Central Universities (No. 3207048418), the Fundamental Research Funds for Central Universities (2242018k30008), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (1107047002), the Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu (BA2018045), the Prospective Joint Research Project of Jiangsu Province (BY2016076-01), the Opening Project of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control (KF201605), and the Scientific Innovation Research Foundation of College Graduate in Jiangsu Province (KYLX16_0266).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjuan Wang or Yuming Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, Y., He, M. et al. Fe-Doped Mesoporous Alumina: Facile One-Pot Synthesis, Modified Surface-Acidity and Its Enhanced Catalytic Performance in Phenol Hydroxylation. Catal Lett 150, 2273–2282 (2020). https://doi.org/10.1007/s10562-020-03153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03153-8

Keywords

Navigation