Skip to main content

Advertisement

Log in

Lotus Leaf-Inspired Hydrothermal Synthesis of Composite Nanoparticles and Application for Photocatalytic Oil Denitrification

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The application of lipophilic composite nanoparticle photocatalysts to denitrification is an important issue, because the lipophilic catalyst exhibits excellent performance compared to other photocatalysis. Taking inspiration from the super-hydrophobic self-cleaning ability of lotus leaf, we reported here that BiVO4–TiO2-570/sepiolite nanosheet composites were prepared by a facile hydrothermal method. The photo-generated carriers in the heterojunction can be separated efficiently and rapidly under the electric field formed in the space charge region to enhance the catalytic activity and lifetime. In this paper, we organically modified the catalyst by adding silane coupling agent (KH-570), which not only reduces the specific surface energy of the catalyst, but also realizes the lipophilicity by constructing the micro-nano structure, so that it is uniformly dispersed in the oil. Meanwhile, using inexpensive nano-sepiolite as a carrier to provide an electron transport medium, accelerate hole-electron separation and increase specific surface area. The catalytic performance of the lipophilic composite nanoparticles was demonstrated by the photocatalytic degradation rate of pyridine contained in simulation oil. The experiment results shows that modified super-lipophilic nanoparticles was obviously higher than that of pure TiO2, which might provide a simple and environmentally friendly approach for the photocatalytic degradation of oil nitrides.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wen J, Lin H, Han X, Zheng Y, Chu WP (2017) Ind Eng Chem Res 56(17):5033–5041

    CAS  Google Scholar 

  2. Huang R, Liang R, Fan H (2017) Rep UK 7(1):7858

    Google Scholar 

  3. Shiraishi Y, Hirai T, Komasawa I (2000) Ind Eng Chem Res 39(8):2826–2836

    CAS  Google Scholar 

  4. Nanakkal AR, Alexander LK (2017) J Mater Sci 52(13):7997–8006

    CAS  Google Scholar 

  5. Yin HY, Zheng YF, Song XC (2019) RSC Adv 9(20):11005–11012

    CAS  Google Scholar 

  6. Ding X, Li Y, Li C, Wang W, Wang L, Feng L, Han D (2019) J Mater Sci 54(13):9385–9396

    CAS  Google Scholar 

  7. Wu Y, Liu LM, An X, Wei T (2019) New J Chem 43(11):4511–4517

    CAS  Google Scholar 

  8. Shi Q, Ping G, Wang X, Xu H, Li J, Cui J, Li G (2019) J Mater Chem A 7(5):2253–2260

    CAS  Google Scholar 

  9. Hu S, Li Y, Li F, Fan Z, Ma H, Li W, Kang X (2016) ACS Sustain Chem Eng 4(4):2269–2278

    CAS  Google Scholar 

  10. Hu Y, Chen W, Fu J, Ba M, Sun F, Zhang P, Zou J (2018) Appl Surf Sci 436:319–326

    CAS  Google Scholar 

  11. Wang R, Bai J, Li Y, Zeng Q, Li J, Zhou B (2017) Nano Micro Lett 9(2):14

    Google Scholar 

  12. Hu Y, Li D, Wang H, Zeng G, Li X, Shao Y (2015) J Mol Catal A 408:172–178

    CAS  Google Scholar 

  13. Wang S, Li W, Chen F, Gu S, Chang Z (2015) Aust J Chem 68(8):1268–1275

    CAS  Google Scholar 

  14. Marmur A (2004) Langmuir 20(9):3517–3519

    CAS  PubMed  Google Scholar 

  15. Barthlott W, Neinhuis C (1997) Planta 202(1):1–8

    CAS  Google Scholar 

  16. Xu P, Yan X, Cong P, Zhu X, Li D (2017) Compos Interface 24(7):635–648

    CAS  Google Scholar 

  17. Zhang Y, Fang F, Wang C, Wang L, Wang X, Chu X, Wang X (2014) Polym Composite 35(6):1204–1211

    CAS  Google Scholar 

  18. Latthe S, Terashima C, Nakata K, Fujishima A (2014) Molecules 19(4):4256–4283

    PubMed  PubMed Central  Google Scholar 

  19. Yoke Yee HA, Luong Van E, Tiong Lim C, Natarajan S, Elmouelhi N, Yee Low H, Rodriguez I (2014) J Polym Sci Pol Phys 52(8):603–609

    Google Scholar 

  20. Kokare AM, Sutar RS, Deshmukh SG, Xing R, Liu S, Latthe SS (2018) AIP Conf Proc 1953(1):100068

    Google Scholar 

  21. Ranjbar M, Taher MA, Sam A (2016) J Clust Sci 27(2):583–592

    CAS  Google Scholar 

  22. Krishnakumar B, Balakrishna A, Nawabjan SA, Pandiyan V, Aguiar A, Sobral AJ (2017) J Phys Chem Solids 111:364–371

    CAS  Google Scholar 

  23. Tang J, Yao W, Li W, Xu J, Jin L, Zhang J, Xu Z (2018) J Coat Technol Res 15(2):375–383

    CAS  Google Scholar 

  24. Zhang H, Han B, Meng J (2016) J Nanosci Nanotechnol 16(12):12433–12443

    CAS  Google Scholar 

  25. Hao Z, Ying L (2019) Spectrosc Spectr Anal 39(7):2067–2072

    Google Scholar 

  26. Lin L, Yi L, Hongwu G, Yachi Z (2017) Revista de la Facultad de Ingeniería U.C.V. 32(9):221–227

    Google Scholar 

  27. Wang J, Wang H, Yu J (2017) J Phys Chem Solids 107:7–13

    CAS  Google Scholar 

  28. Al-Ani A, Gertisser R, Zholobenko V (2018) Appl Clay Sci 162:297–304

    CAS  Google Scholar 

  29. Yan P, Wang Y, Wang M, Lu J, Han F (2017) Composite 38:E208–E213

    CAS  Google Scholar 

  30. Perez-Carvajal J, Aranda P, Ruiz-Hitzky E (2019) J Solid State Chem 270:287–294

    CAS  Google Scholar 

  31. Han X, Dong S, Sun J, Wang K, Zhang W, Sun J (2017) Mater Lett 187:154–157

    CAS  Google Scholar 

  32. Naseri N, Sangpour P, Moshfegh AZ (2011) Electrochim Acta 56(3):1150–1158

    CAS  Google Scholar 

  33. Yousefzadeh S, Faraji M, Moshfegh AZ (2016) J Electroanal Chem 763:1–9

    CAS  Google Scholar 

  34. Sun Z, Li C, Zhu S, Cho M, Chen Z, Cho K, Zhang D (2015) Chemsuschem 8(16):2719–2726

    CAS  PubMed  Google Scholar 

  35. Qiu S, Li Y, Li G, Zhang Z, Li Y, Wu T (2019) ACS Sustain Chem ENG 7(5):5560–5567

    CAS  Google Scholar 

  36. Lee JS, You KH, Park CB (2012) ADV Mater 24(8):1084–1088

    CAS  PubMed  Google Scholar 

  37. Khalid NR, Ahmed E, Niaz NA, Nabi G, Ahmad M, Tahir MB, Khan Y (2017) Ceram Int 43(9):6771–6777

    CAS  Google Scholar 

  38. Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Jiang M, Whangbo MH (2009) Chem Eur J 15(46):12576–12579

    CAS  PubMed  Google Scholar 

  39. Huang X, Lei Y, Guan H, Hao Y, Liu H, Sun G, Song S (2017) Rep UK 7(1):15517

    Google Scholar 

  40. Chen Y, Ji S, Qiao T, Miao S, Zhao Y (2016) NANO 11(05):1650052

    CAS  Google Scholar 

  41. Huh ES, Zazybin A, Palgunadi J, Ahn S, Hong J, Kim HS, Ahn BS (2009) Energy Fuel 23(6):3032–3038

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support of the National Natural Science Foundation of China (Grant No. 51146008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chen, Y. & Liang, Y. Lotus Leaf-Inspired Hydrothermal Synthesis of Composite Nanoparticles and Application for Photocatalytic Oil Denitrification. Catal Lett 150, 2474–2486 (2020). https://doi.org/10.1007/s10562-020-03146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03146-7

Keywords

Navigation