Skip to main content

Advertisement

Log in

Efficient Synthesis of γ-Valerolactone-A Potential Fuel from Biomass Derived Levulinic Acid Using Catalytic Transfer Hydrogenation Over Hf@CCSO3H Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new hafnium based carbonaceous catalyst (Hf@CCSO3H) was prepared by simultaneous carbonization and sulfonation of readily available glucose, followed by incorporation of hafnium metal on the surface of catalyst. The catalyst was well characterized using FT-IR, PXRD, EDX, SEM, 13C CPNMR, XPS and BET analysis. The catalytic activity of Hf@CCSO3H was evaluated for synthesis of γ-valerolactone-a potential fuel and green solvent. γ-valerolactone was synthesized from biomass derived levulinic acid by catalytic transfer hydrogenation using 150 wt% of catalyst at 200 ℃ for 24 h in isopropanol solvent as a hydrogen donor. 100% conversion of levulinic acid was achieved with an excellent yield of 96% with more than 99% selectivity of γ-valerolactone as evident from GC analysis. The method developed is simple, efficient and economical.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wright RHW, Palkovits R (2012) Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone. Chemsuschem 5:1657–1667

    CAS  PubMed  Google Scholar 

  2. Xue Z, Yu D, Zhao X, Mu T (2019) Upgrading of levulinic acid into diverse N-containing functional chemicals. Green Chem 21:5449–5468

    CAS  Google Scholar 

  3. Kumar K, Parveen F, Patra T, Upadhyayula S (2018) Hydrothermal conversion of glucose to levulinic acid using multifunctional ionic liquids: effects of metal ion co-catalysts on the product yield. New J Chem 42:228–236

    CAS  Google Scholar 

  4. Szabo GN, Mika LT (2018) Conservative evolution and industrial metabolism in green chemistry. Green Chem 20:2171–2191

    Google Scholar 

  5. Zhang X, Zhang P, Chen C, Zhang J, Yang G, Zheng L, Zhang J, Han B (2019) Fabrication of 2D metal-organic framework nanosheets with tailorable thickness using bio-based surfactants and their application in catalysis. Green Chem 21:54–58

    CAS  Google Scholar 

  6. Gundekari S, Srinivasan K (2019) Hydrous ruthenium oxide: a new generation remarkable catalyst precursor for energy efficient and sustainable production of γ-valerolactone from levulinic acid in aqueous medium. Appl Catal A 569:117–125

    CAS  Google Scholar 

  7. Gupta SSR, Kantam ML (2018) Selective hydrogenation of levulinic acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst. Catal Today 309:189–194

    CAS  Google Scholar 

  8. Zhang L, Mao J, Li S, Yin J, Sun S, Guo X, Song C, Zhou J (2018) Hydrogenation of levulinic acid into γ-valerolactone over in situ reduced Cu-Ag bimetallic catalyst: Strategy and mechanism of preventing Cu leaching. Appl Catal B 232:1–10

    CAS  Google Scholar 

  9. Liu L, Gao F, Cocepcion P, Corma A (2017) A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. J Catal 350:218–225

    CAS  Google Scholar 

  10. Zhang B, Wu Q, Zhang C, Su X, Shi R, Lin W, Li W, Li Y, Zhao FA (2017) Robust Ru/ZSM-5 hydrogenation catalyst: Insights into the resistances to ruthenium aggregation and carbon deposition. ChemCatChem 9:3646–3654

    CAS  Google Scholar 

  11. Li S, Wang Y, Yang Y, Chen B, Tai J, Liu H, Han B (2019) Conversion of levulinic acid to γ-valerolactone over ultra-thin TiO2 nanosheets decorated with ultra small Ru nanoparticle catalysts under mild conditions. Green Chem 21:770–774

    CAS  Google Scholar 

  12. Ftouni J, Genuino HC, MuCoz-Murillo A, Pieter CA, Weckhuysen BM (2017) Influence of sulfuric acid on the performance of ruthenium-based catalysts in the liquid-phase hydrogenation of levulinic acid to γ-valerolactone. Chemsuschem 10:2891–2896

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Rong Z, Wang R, Wang T, Du Q, Wang Y, Qu J (2017) Graphene based metal/acid bifunctional catalyst for the conversion of levulinic acid to γ-valerolactone. ACS Sustainable Chem Eng 5:1538–1548

    CAS  Google Scholar 

  14. Feng HJ, Li XC, Qian H, Zhang YF, Zhang DH, Zhao D, Hong SG, Zhang N (2019) Efficient and sustainable hydrogenation of levulinic-acid to gamma-valerolactone in aqueous solution over acid-resistant CePO4/Co2P catalysts. Green Chem 21:1743–1756

    CAS  Google Scholar 

  15. Xu Q, Li X, Yu C, Deng J, Guo Q, Fu Y (2016) Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone. Green Chem 18:1287–1294

    CAS  Google Scholar 

  16. Yang Y, Sun CJ, Brown DE, Zhang L, Yang F, Zhao H, Wang Y, Ma X, Zhang X, Ren Y (2016) A smart strategy to fabricate Ru nanoparticles inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts. Green Chem 18:3558–3566

    CAS  Google Scholar 

  17. Novodárszki G, Solt HE, Valyon J, Lónyi F, Hancsók J, Deka D, Tuba R, Mihály MR (2019) Selective hydroconversion of levulinic acid to γ-valerolactone or 2-methyltetrahydrofuran over silica-supported cobalt catalysts. Catal Sci Tech 9:2291–2304

    Google Scholar 

  18. He D, He Q, Jiang P, Zhou G, Hu R, Fu W (2019) Novel Cu/Al2O3-ZrO2 composite for selective hydrogenation of levulinic acid to γ-valerolactone. Catal Comm 125:82–86

    CAS  Google Scholar 

  19. Yi Y, Liu H, Xiao LP, Wnag B, Song G (2018) Highly efficient hydrogenation of levulinic acid into γ-valerolactone using an iron pincer complex. Chemsuschem 11:1474–1478

    CAS  PubMed  Google Scholar 

  20. Ashokraju M, Mohan V, Murali K, Rao MV, Raju BD (2018) Formic acid assisted hydrogenation of levulinic acid to γ-valerolactone over ordered mesoporous Cu/Fe2O3 catalyst prepared by hard template method. J Chem Sci 6:1–8

    Google Scholar 

  21. Wojciechowska J, Jędrzejczyk M, Grams J, Keller N, Ruppert AM (2019) Enhanced production of γ-valerolactone with an internal source of hydrogen on Ca-modified TiO2 supported Ru catalysts. Chemsuschem 12:639–650

    CAS  PubMed  Google Scholar 

  22. Amenuvor G, Makhubela BCE, Darkwa J (2016) Efficient solvent-free hydrogenation of levulinic acid to γ-valerolactone by pyrazolylphosphite and pyrazolylphosphinite ruthenium(II) complexes. ACS Sustain Chem Eng 4:6010–6018

    CAS  Google Scholar 

  23. Verma S, Nasir Baig RB, Nadagouda MN, Varma RS (2016) Sustainable strategy utilizing biomass: visible-light- mediated synthesis of γ-valerolactone. ChemCatChem 8:690–693

    CAS  Google Scholar 

  24. Putro JN, Kurniawan A, Soetaredjo FE, Lon SY, Jub YH, Isamdji S (2015) Production of γ-valerolactone from sugarcane bagasse over TiO2-supported platinum and acid-activated bentonite as a co-catalyst. RSC Adv 5:41285–41299

    CAS  Google Scholar 

  25. Metzkera G, Burtoloso ACB (2015) Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis. Chem Commun 51:14199–14202

    Google Scholar 

  26. Yuan J, Li SS, Yu L, Liu Y-M, Cao Y, He HY, Fan KN (2013) Copper-based catalysts for the efficient conversion of carbohydrate biomass into γ -valerolactone in the absence of externally added hydrogen. Energy Environ Sci 6:3308–3313

    CAS  Google Scholar 

  27. Rojas-Buzo S, Garcia-Garcia P, Corma AV (2018) Catalytic transfer hydrogenation of biomass-derived carbonyls over hafnium-based metal-organic frameworks. Chemsuschem 11:432–438

    CAS  PubMed  Google Scholar 

  28. Kuwahara Y, Kango H, Yamashita H (2017) Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over sulfonic acid-functionalized UiO-66. ACS Sustain Chem Eng 5:1141–1152

    CAS  Google Scholar 

  29. Kuwahara Y, Kaburagi W, Osada Y, Fuijitani T, Yamashita H (2017) Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over ZrO2 catalyst supported on SBA-15 silica. Catal Today 281:418–428

    CAS  Google Scholar 

  30. Xie C, Song J, Zhou B, Hu J, Zhang Z, Zhang P, Jiang Z, Han B (2016) Porous hafnium phosphonate: novel heterogeneous catalyst for conversion of levulinic acid and esters into γ-valerolactone. ACS Sustain Chem Eng 4:6231–6236

    CAS  Google Scholar 

  31. Piskun A, Winkelman JGM, Tang Z, Heeres HJ (2016) Support screening studies on the hydrogenation of levulinic acid to γ-valerolactone in water using Ru catalysts. Catalysts 6:131–134

    Google Scholar 

  32. Shimizu K, Kanno S, Kon K (2014) Hydrogenation of levulinic acid to γ-valerolactone by Ni and MoOx co-loaded carbon catalysts. Green Chem 16:3899–3903

    CAS  Google Scholar 

  33. Sha Y, Xiao Z, Zhou H, Yang K, Song Y, Li N, He R, Zhi K, Liu Q (2017) Direct use of humic acid mixtures to construct efficient Zr-containing catalysts for Meerwein-Ponndorf-Verley reactions. Green Chem 19:4829–4837

    CAS  Google Scholar 

  34. Kuwahara Y, Kaburagia W, Fujitania T (2014) Catalytic transfer hydrogenation of levulinate esters to γ-valerolactone over supported ruthenium hydroxide catalysts. RSC Adv 4:45848–45855

    CAS  Google Scholar 

  35. Xiao Z, Zhou H, Hao J, Hong H, Song Y, He R, Zhi K, Liu Q (2017) A novel and highly efficient Zr-containing catalyst based on humic acids for the conversion of biomass-derived ethyl levulinate into gammavalerolactone. Fuel 193:322–330

    CAS  Google Scholar 

  36. Wu W, Li Y, Li H, Zhao W, Yang S (2018) Acid-base bifunctional Hf nanohybrids enable high selectivity in the catalytic conversion of ethyl levulinate to γ-valerolactone. Catalysts 8:264–277

    Google Scholar 

  37. Ouyang W, Zhao D, Wang Y, Balu AM, Len C, Luque R (2018) Continuous flow conversion of biomass-derived methyl levulinate into γ-valerolactone using functional metal organic frameworks. ACS Sustain Chem Eng 6:6746–6752

    CAS  Google Scholar 

  38. Pan J, Xu Q, Fang L, Tu G, Fu Y, Chen G, Zhang F, Zhu W (2019) Ru nanoclusters supported on HfO2@CN derived from NH2-UiO-66(Hf) as stable catalysts for the hydrogenation of levulinic acid to γ-valerolactone. Catal Commun 128:105710

    Google Scholar 

  39. Liu M, Fan G, Yang L, Li F (2019) Hierarchical flower-like bimetallic NiCu catalysts for catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone. Ind Eng Chem Res 58:10317–10327

    CAS  Google Scholar 

  40. Rathod PV, Nale SD, Jadhav VH (2017) Metal free acid base catalyst in the selective synthesis of 2, 5-diformylfuran (DFF) from HMF, fructose and glucose. ACS Sustain Chem Eng 5:701–707

    CAS  Google Scholar 

  41. Rathod PV, Jadhav VH (2018) Efficient method for synthesis of FDCA from 5-hydroxymethylfurfural and fructose using Pd/CC catalyst under aqueous conditions. ACS Sustain Chem Eng 6:5766–5771

    CAS  Google Scholar 

  42. Nale SD, Rathod PV, Jadhav VH (2017) Manganese incorporated on glucose as an efficient catalyst for the synthesis of adipic acid using molecular O2 in aqueous medium. App Catal A 546:122–125

    CAS  Google Scholar 

  43. Assary RS, Curtiss LA, Dumesic JA (2013) Exploring Meerwein-Ponndorf-Verley reduction chemistry for biomass catalysis using a first-principles approach. ACS Catal 3:2694–2704

    CAS  Google Scholar 

  44. Xue Z, Jiang J, Li G, Zhao W, Wang J, Mu T (2016) Zirconium-cyanuric acid coordination polymer: Highly efficient catalyst for conversion of levulinic acid to γ-valerolactone. Cat Sci Technol 6:5374–5379

    CAS  Google Scholar 

Download references

Acknowledgement

We are thankful to CSIR-NCL for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vrushali H. Jadhav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jori, P.K., Jadhav, V.H. Efficient Synthesis of γ-Valerolactone-A Potential Fuel from Biomass Derived Levulinic Acid Using Catalytic Transfer Hydrogenation Over Hf@CCSO3H Catalyst. Catal Lett 150, 2038–2044 (2020). https://doi.org/10.1007/s10562-020-03119-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03119-w

Keywords

Navigation