Skip to main content

Advertisement

Log in

Enhanced Photocatalytic CO2 Reduction and Water Splitting Over a Boron-Rich Alloy Boron Suboxide (B6O) via Cr or Co Doping

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Boron-rich alloy boron suboxide (B6O) as a novel metal-free photocatalyst was recently explored for photocatalytic CO2 reduction and water splitting. However, to broaden the potential applications of B6O in the field, further improving its activity and understanding its fundamental chemical properties are essential. Herein, transition metal doping (Cr or Co) is designed to engineer the band structure of B6O via a solid state reaction. The valence band edge of Cr or Co doped B6O is proposed to be more positive than that of pristine B6O while the original conduction band of B6O is not much influenced by doping, contributing to the better light harvesting ability and lower charge recombination rate of doped B6O. The photocatalytic and photoelectrochemical (PEC) performances of doped B6O were therefore remarkably enhanced. The apparent quantum yields (AQY) of 20 wt% Cr or Co doped B6O are much higher than that of pristine B6O. In addition, the 20 wt% Cr doped B6O exhibits the best electrical conductivity and photocatalytic performance compared with the Co doped B6O and pristine B6O. The present work demonstrates a facile and effective strategy to engineer the band structure and reduce the charge migration resistance of B6O.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Chem Rev 110:6446–6473

    CAS  PubMed  Google Scholar 

  2. Panwar NL, Kaushik SC, Kothari S (2011) Renew Sustain Energy Rev 15:1513–1524

    Google Scholar 

  3. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278

    CAS  PubMed  Google Scholar 

  4. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729–15735

    CAS  PubMed  Google Scholar 

  5. Luo ZB, Wang T, Zhang JJ, Li CC, Li HM, Gong JL (2017) Angew Chem Int Ed 56:12878–12882

    CAS  Google Scholar 

  6. Li JP, Ren DJ, Wu ZX, Xu J, Bao YJ, He S, Chen Y (2018) J Colloid Interface Sci 530:78–87

    CAS  PubMed  Google Scholar 

  7. Pei L, Lv BH, Wang SB, Yu ZT, Yan SC, Abe R, Zou ZG (2018) ACS Appl Energy Mater 1:4150–4157

    CAS  Google Scholar 

  8. Nie N, Zhang LY, Fu JW, Cheng B, Yu JG (2018) Appl Surf Sci 441:12–22

    CAS  Google Scholar 

  9. Cen YL, Shi JJ, Zhang M, Wu M, Du J, Guo WH, Zhu YH (2019) J Colloid Interface Sci 546:20–31

    CAS  PubMed  Google Scholar 

  10. Park J, Kim S, Sim Y, Yoon OJ, Han MS, Yang HS, Kim YY, Jhon YM, Kim J, Seong MJ (2016) J Alloys Compd 659:38–43

    CAS  Google Scholar 

  11. Hou YD, Zhu YS, Xu Y, Wang XC (2014) Appl Catal B 156–157:122–127

    Google Scholar 

  12. Guan ZJ, Luo WJ, Xu Y, Tao QC, Wen X, Zou ZG (2016) ACS Appl Mater Interfaces 8:5432–5438

    CAS  PubMed  Google Scholar 

  13. Wang XC, Maeda K, Thomas A, Takanabe K (2009) X G, Carlsson JM, Domen K, Antonietti M. Nat Mater 8:76–80

    CAS  PubMed  Google Scholar 

  14. Wang F, Ng WKH, Yu JC, Zhu HJ, Li CH, Zhang L, Liu ZF, Li Q (2012) Appl Catal B 111–112:409–414

    Google Scholar 

  15. Zhu XJ, Zhang TM, Sun ZJ, Chen HL, Guan J, Chen X, Ji HX, Du PW, Yang SF (2017) Adv Mater 29:1605776

    Google Scholar 

  16. Liu G, Niu P, Yin LC, Cheng HM (2012) J Am Chem Soc 134:9070–9073

    CAS  PubMed  Google Scholar 

  17. Fang YX, Wang XC (2017) Angew Chem Int Ed 56:15506–15518

    CAS  Google Scholar 

  18. Liu JK, Wen SH, Hou Y, Zuo F, Beran GJ, Feng PY (2013) Angew Chem Int Ed 52:3241–3245

    CAS  Google Scholar 

  19. Shi L, Li P, Zhou W, Wang T, Chang K, Zhang HB (2016) Kako k, Liu GG, Ye JH. Nano Energy 28:158–163

    Google Scholar 

  20. Liu GG, Meng XG, Zhang HB, Zhao GX, Pang H, Wang T, Li P, Kako T, Ye JH (2017) Angew Chem Int Ed 56:5570–5574

    CAS  Google Scholar 

  21. Wang SJ, Swingle SF, Ye H, Fan FR, Cowley AH, Bard AJ (2012) J Am Chem Soc 134:11056–11059

    CAS  PubMed  Google Scholar 

  22. Yan DJ, Liu PL, Tao Q, Zhu PW, Liu JK, Luo HA (2019) Sol RRL 3:1900014

    Google Scholar 

  23. Olofsson M, Lundstrom T (1997) J Alloys Compd 25:91–95

    Google Scholar 

  24. Ektarawong A, Simak SI, Hultman L, Birch J, Tasnádi F, Wang F, Alling B (2016) J Chem Phys 144:134503

    CAS  PubMed  Google Scholar 

  25. Su FZ, Mathew SC, Lipner G, Fu XZ, Antonietti M, Blechert S, Wang XC (2010) J Am Chem Soc 132:16299–16301

    CAS  PubMed  Google Scholar 

  26. Chang C, Fu Y, Hu M, Wang CY, Shan GQ, Zhu LY (2013) Appl Catal B 142–143:553–560

    Google Scholar 

  27. Yu Y, Zeng JF, Chen CJ, Xie Z, Guo RS, Liu ZL, Zhou XC, Yong Y, Zheng ZJ (2014) Adv Mater 26:810–815

    CAS  PubMed  Google Scholar 

  28. Xie M, Tang JC, Kong LS, Lu WH, Natarajan V, Zhu F, Zhan JH (2019) Chem Eng J 360:1213–1222

    CAS  Google Scholar 

  29. Han Q, Hu CG, Zhao F, Zhang ZP, Chen N, Qu LT (2015) J Mater Chem A 3:4612–4619

    CAS  Google Scholar 

  30. Sun ZC, Yu ZQ, Liu YY, Shi C, Zhu MS, Wang AJ (2019) J Colloid Interface Sci 533:251–258

    CAS  PubMed  Google Scholar 

  31. Shi HF, Chen GQ, Zhang CL, Zou ZG (2014) ACS Catal 4:3637–3643

    CAS  Google Scholar 

  32. Wang FZ, Li WJ, Gu SN, Li HD, Ren CJ, Liu XT (2018) Eur J Inorg Chem 2018:2564–2573

    CAS  Google Scholar 

  33. Fu JW, Xu QL, Low JX, Jiang CJ, Yu JG (2019) Appl Catal B 243:556–565

    CAS  Google Scholar 

  34. Song YH, Gu JM, Xia KX, Yi JJ, Chen HX, She XJ, Chen ZG, Ding C, Li HM, Xu H (2019) Appl Surf Sci 467–468:56–64

    Google Scholar 

  35. Zhang YK, Jin ZL (2019) Catal Lett 149:34–48

    CAS  Google Scholar 

  36. Chen XF, Zhang JS, Fu XZ, Antonietti M, Wang XC (2009) J Am Chem Soc 131:11658–11659

    CAS  PubMed  Google Scholar 

  37. Wang XC, Chen XF, Thomas A, Fu XZ, Antonietti M (2009) Adv Mater 21:1609–1612

    CAS  Google Scholar 

  38. Yue B, Li QY, Iwai H, Kako T, Ye JH (2011) Sci Technol Adv Mater 12:034401

    PubMed  PubMed Central  Google Scholar 

  39. Wang YG, Wang YZ, Chen YT, Yin CC, Zuo YH, Cui LF (2015) Mater Lett 139:70–72

    CAS  Google Scholar 

  40. Xie SM, Chen H, Solodkyi I, Vasylkiv O, Tok AIY (2015) Scr Mater 99:69–72

    CAS  Google Scholar 

  41. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, Shea KO, Entezari MH, Dionysiou DD (2012) Appl Catal B 125:331–349

    CAS  Google Scholar 

  42. Zhang YH, Gong MD, Liu X, Ji LJ, Yang ZL, Zhu XS (2019) J Mater Sci 54:2975–2989

    CAS  Google Scholar 

  43. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2005) Chem Mater 17:395–401

    CAS  Google Scholar 

  44. Sreethawong T, Puangpetch T, Chavadej S, Yoshikawa S (2007) J Power Sources 165:861–869

    CAS  Google Scholar 

  45. Varley JB, Lordi V, Miglio A, Hautier G (2014) Phys Rev B 90:045205

    Google Scholar 

  46. Kalanur SS, Yoo IH, Eom K, Seo H (2018) J Catal 357:127–137

    Google Scholar 

  47. Ennaceur MM, Terreault B (2000) J Nucl Mater 280:33–38

    CAS  Google Scholar 

  48. Zhang KH, Bersch BM, Joshi J, Addou R, Cormier CR, Zhang CX, Xu K, Briggs NC, Wang K, Subramanian S, Cho K, Fullerton-Shirey S, Wallace RM, Vora PM, Robinson JA (2018) Adv Funct Mater 28:1706950

    Google Scholar 

  49. Reddy CV, Babu B, Shim J (2017) Mater Sci Eng B 223:131–142

    CAS  Google Scholar 

  50. Wang YP, Zhu T, Zhang YF, Kong XZ, Liang SQ, Cao GZ, Pan AQ (2017) J Mater Chem A 5:18448–18456

    CAS  Google Scholar 

  51. Cai PW, Huang JH, Chen JX, Wen ZH (2017) Angew Chem Int Ed 56:4858–4861

    CAS  Google Scholar 

  52. Yin B, Cao XX, Pan AQ, Luo ZG, Dinesh S, Lin JD, Tang Y, Liang SQ, Cao GZ (2018) Adv Sci 5:1800829

    Google Scholar 

  53. Zhang K, Zhang G, Qu JH, Liu HJ (2018) Small 14:1802760

    Google Scholar 

  54. Yan DJ, Liu JK, Fu XC, Liu PL, Luo HA (2019) J Mater Sci 54:6151–6163

    CAS  Google Scholar 

  55. Hirakawa T, Nosaka Y (2002) Langmuir 18:3247–3254

    CAS  Google Scholar 

  56. Liu CH, Wang F, Zhu SS, Xu Y, Liang Q, Chen ZD (2018) J Colloid Interface Sci 530:403–411

    CAS  PubMed  Google Scholar 

  57. Liu HL, Lu ZH, Yue L, Liu J, Gan ZH, Shu C, Zhang T, Shi J, Xiong R (2011) Appl Surf Sci 257:9355–9361

    CAS  Google Scholar 

  58. Cao J, Yang ZH, Xiong WP, Zhou YY, Peng YR, Li X, Zhou CY, Xu R, Zhang YR (2018) Chem Eng J 353:126–137

    CAS  Google Scholar 

  59. Niu XY, Yan WJ, Zhao HL, Yang JK (2018) Appl Surf Sci 440:804–813

    CAS  Google Scholar 

  60. Yan DJ, Fu XC, Shang ZC, Liu JK, Luo HA (2019) Chem Eng J 361:853–861

    CAS  Google Scholar 

  61. Humam SB, Nguyen HH, Regmi C, Gyawali G, Joshi B, Lee SW (2019) Ceram Int 45:4230–4236

    Google Scholar 

  62. Yang H, Xu B, Yuan SS, Zhang QT, Zhang M, Ohnoc T (2019) Appl Catal B 243:513–521

    CAS  Google Scholar 

  63. Wang FX, Septina W, Chemseddine A, Adbi FF, Friedrich D, Bogdanoff P, Krol RVD, Tilley SD, Berglund SP (2017) J Am Chem Soc 139:15094–15103

    CAS  PubMed  Google Scholar 

  64. Ahn HJ, Yoon KY, Kwak MJ, Park J, Jang JH (2018) ACS Catal 8:11932–11939

    CAS  Google Scholar 

  65. Chang H, Shang ZC, Kong QQ, Liu PL, Liu JK, Luo HA (2019) Chem Eng J 370:314–321

    CAS  Google Scholar 

  66. Jiao ZB, Zhang Y, Chen T, Dong QS, Lu GX, Bi YP (2014) Chem Eur J 20:2654–2662

    CAS  PubMed  Google Scholar 

  67. Malengreaux CM, Pirard SL, Leonard G, Mahy JG, Herlitschke M, Klobes B, Hermann R, Heinrichs B, Bartlett JR (2017) J Alloys Compd 691:726–738

    CAS  Google Scholar 

  68. Zhao HY, Fan ZR, Fu QM, Wang H, Hu Z, Tao H, Zhong XD, Ma ZB, Jia TT (2018) J Mater Sci 53:15340–15347

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Fund of Hunan Provincial Education Department (18B065) and the Natural Science Foundation of Hunan Province (2019JJ50595).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jikai Liu or He’an Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Liu, J., Yan, D. et al. Enhanced Photocatalytic CO2 Reduction and Water Splitting Over a Boron-Rich Alloy Boron Suboxide (B6O) via Cr or Co Doping. Catal Lett 150, 2497–2509 (2020). https://doi.org/10.1007/s10562-020-03111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03111-4

Keywords

Navigation