Sustainable Hydrogen Generation by Catalytic Hydrolysis of NaBH4 Using Tailored Nanostructured Urchin-like CuCo2O4 Spinel Catalyst

Abstract

The present study describes the hydrogen production as a future energy source via hydrolysis of NaBH4 catalyzed by urchin-like CuCo2O4 spinel catalyst prepared by urea-assisted hydrothermal synthesis method. The as-synthesized copper–cobalt double hydroxide precursor and the resultant CuCo2O4 spinel were characterized by using various analytical, spectroscopic and microscopic techniques in order to understand their physiochemical and morphological aspects. The detail characterization results confirmed the successful formation of CuCo2O4 spinel phase with urchin-like morphology. The CuCo2O4 spinel catalyst was then tested for its application in hydrogen generation from NaBH4 hydrolysis by performing the reaction using 10 wt% of CuCo2O4 spinel catalyst and 0.5 g NaBH4 at room temperature. The CuCo2O4 spinel catalyst with tailored architecture displayed high catalytic activity with H2 generation rate of 1370 mL min−1 g−1 (1438 mL in 21 min). Major factors affecting the hydrolysis of NaBH4 reaction such as catalyst loading, NaOH concentration and temperature variation was also studied and discussed in detail. Correspondingly, the low activation energy of 22 kJ mol−1 was obtained from the Arrhenius plot and kinetic studies revealed that the hydrolysis of NaBH4 followed first order kinetics. Further, recyclability study of CuCo2O4 spinel catalyst was also performed which displayed good catalytic activity and stability even after five successive recycles. Characterization data of reused catalyst revealed that physiochemical properties of fresh CuCo2O4 spinel catalyst were well-preserved in the reused catalyst as well. Therefore, nanostructured CuCo2O4 spinel can be demonstrated as one of the most efficient, cost effective bimetallic spinel catalyst so far for application in the hydrogen generation.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Acar C, Dincer I (2014) Int J Hydrogen Energy 39:1–12

    CAS  Google Scholar 

  2. 2.

    Dutta S (2014) J Ind Eng Chem 20:1148–1156

    CAS  Google Scholar 

  3. 3.

    Höök M, Tang X (2013) Energy Policy 52:797–809

    Google Scholar 

  4. 4.

    Jain I (2009) Int J Hydrogen Energy 34:7368–7378

    CAS  Google Scholar 

  5. 5.

    Demirci U, Akdim O, Andrieux J, Hannauer J, Chamoun R, Miele P (2010) Fuel Cells 10:335–350

    CAS  Google Scholar 

  6. 6.

    Nabid MR, Bide Y, Dastar F (2015) Catal Lett 145:1798–1807

    CAS  Google Scholar 

  7. 7.

    Crisafulli C, Scirè S, Zito R, Bongiorno C (2012) Catal Lett 142:882–888

    CAS  Google Scholar 

  8. 8.

    Amit V, Sandesh B (2012) Int J Hydrogen Energy 37:327–334

    Google Scholar 

  9. 9.

    Huff C, Long JM, Heyman A, Abdel-Fattah TM (2018) ACS Appl Energy Mater 1:4635–4640

    CAS  Google Scholar 

  10. 10.

    Brack P, Dann SE, Wijayantha KGU (2015) Energy Sci Eng 3:174–188

    CAS  Google Scholar 

  11. 11.

    Wei L, Ma M, Wang D, Wang Q, Lu Y, Zhang S (2018) Funct Mater Lett 11:1850079

    CAS  Google Scholar 

  12. 12.

    Bullock RM (2017) Chemistry 2:444–446

    CAS  Google Scholar 

  13. 13.

    Ingersoll JC, Mani N, Thenmozhiyal JC, Muthaiah A (2007) J Power Sources 173:450–457

    CAS  Google Scholar 

  14. 14.

    Loghmani MH, Shojaei AF, Khakzad M (2017) Energy 126:830–840

    CAS  Google Scholar 

  15. 15.

    Liu C-H, Chen B-H, Hsueh C-L, Ku J-R, Jeng M-S, Tsau F (2009) Int J Hydrogen Energy 34:2153–2163

    CAS  Google Scholar 

  16. 16.

    Rakap M, Kalu EE, Özkar S (2011) J Alloy Compd 509:7016–7021

    CAS  Google Scholar 

  17. 17.

    Umeshbabu E, Rajeshkhanna G, Rao GR (2014) Int J Hydrogen Energy 39:15627–15638

    CAS  Google Scholar 

  18. 18.

    Reddy MV, Yu C, Jiahuan F, Loh KP, Chowdari BVR (2012) RSC Adv 2:9619

    CAS  Google Scholar 

  19. 19.

    Jadhav HS, Pawar SM, Jadhav AH, Thorat GM, Seo JG (2016) Sci Rep 6:31120

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Prasad D, Patil KN, Sandhya N, Chaitra C, Bhanushali JT, Samal AK, Keri RS, Jadhav AH, Nagaraja BM (2019) Appl Surf Sci 489:538–551

    CAS  Google Scholar 

  21. 21.

    Prasad D, Patil KN, Chaitra C, Sandhya N, Bhanushali JT, Gosavi SW, Jadhav AH, Nagaraja BM (2019) Appl Surf Sci 488:714–727

    CAS  Google Scholar 

  22. 22.

    Lei Y, Li J, Wang Y, Gu L, Chang Y, Yuan H, Xiao D (2014) ACS Appl Mater Interfaces 6:1773–1780

    CAS  PubMed  Google Scholar 

  23. 23.

    Vijayakumar S, Lee S-H, Ryu K-S (2015) Electrochim Acta 182:979–986

    CAS  Google Scholar 

  24. 24.

    Liu H, Jiao Q, Zhao Y, Li H, Sun C, Li X (2010) J Alloy Compd 496:317–323

    CAS  Google Scholar 

  25. 25.

    Meher SK, Rao GR (2013) J Phys Chem C 117:4888–4900

    CAS  Google Scholar 

  26. 26.

    Meher SK, Justin P, Ranga RG (2011) ACS Appl Mater Interfaces 3:2063–2073

    CAS  PubMed  Google Scholar 

  27. 27.

    Liu J, Li K, Wang H, Zhu M, Xu H, Yan H (2004) Nanotechnology 16:82

    Google Scholar 

  28. 28.

    Liao L, Zhang H, Li W, Huang X, Xiao Z, Xu K, Yang J, Zou R, Hu J (2017) J Alloy Compd 695:3503–3510

    CAS  Google Scholar 

  29. 29.

    Zhong S, Zheng T, Qi B, Miao D, Willis F (2008) J Colloid Interface Sci 319:247–251

    Google Scholar 

  30. 30.

    Gaber A, Abdel-Rahim MA, Abdel-Latief AY, Abdel-Salam MN (2014) J Electrochem Sci 9:81–95

    Google Scholar 

  31. 31.

    Rey F, Fornea V, Jose M (1992) J Chem Soc Faraday Transactions 88:2233–2238

    CAS  Google Scholar 

  32. 32.

    Pagano JJ, Thouvenel-Romans S, Steinbock O (2007) Phys Chem Chem Phys 9:110–116

    CAS  PubMed  Google Scholar 

  33. 33.

    Yang J, Liu H, Martens WN, Frost RL (2009) J Phys Chem C 114:111–119

    Google Scholar 

  34. 34.

    Padmanathan N, Selladurai S (2014) Ionics 20:479–487

    CAS  Google Scholar 

  35. 35.

    Na CW, Woo H-S, Kim H-J, Jeong U, Chung J-H, Lee J-H (2012) Cryst Eng Commun 14:3737–3741

    CAS  Google Scholar 

  36. 36.

    Liu S, Hui K, Hui K (2016) ACS Appl Mater Interfaces 8:3258–3267

    CAS  PubMed  Google Scholar 

  37. 37.

    Das AK, Kim NH, Lee SH, Sohn Y, Lee JH (2018) Compos B Eng 150:269–276

    CAS  Google Scholar 

  38. 38.

    Liao J, Feng Y, Wu S, Ye H, Zhang J, Zhang X, Xie F, Li H (2019) Nanomaterials 9:360

    CAS  PubMed Central  Google Scholar 

  39. 39.

    Zakaria ZY, Linnekoski J, Amin N (2012) Chem Eng J 207:803–813

    Google Scholar 

  40. 40.

    Mo S, Li S, Li J, Deng Y, Peng S, Chen J, Chen Y (2016) Nanoscale 8:15763–15773

    CAS  PubMed  Google Scholar 

  41. 41.

    Ramanathan R, Sugunan S (2006) Doctoral dissertation, University of Science and Technology Kochi

  42. 42.

    Appaturi JN, Adam F (2013) Appl Catal B 136–137:150–159

    Google Scholar 

  43. 43.

    Liu Q, Zhang S, Liao J, Feng K, Zheng Y, Pollet BG, Li H (2017) J Power Sources 355:9

    Google Scholar 

  44. 44.

    Liu B, Rose A, Zhang N, Hu Y, Ma M (2017) J Phys Chem C 121:2610–12616

    Google Scholar 

  45. 45.

    Liu M, Liang L, Liang T, Lin X, Shi L, Wang F, Sun J (2015) J Mol Catal A Chem 408:242–249

    CAS  Google Scholar 

  46. 46.

    Şahin Ö, Kilinc D, Saka C (2015) Sep Sci Technol 50:2051–2059

    Google Scholar 

  47. 47.

    Ma M, Wei L, Jin F (2019) Funct Mater Lett 12:1850109

    CAS  Google Scholar 

  48. 48.

    Wu Z, Ge S (2011) Catal Commun 13:40–43

    CAS  Google Scholar 

  49. 49.

    Liu Z, Guo B, Chan SH, Tang EH, Hong L (2008) J Power Sources 176:306–311

    CAS  Google Scholar 

  50. 50.

    Li T, Chen ZX, Cao YL, Ai XP, Yang HX (2012) Electrochim Acta 68:202–205

    CAS  Google Scholar 

  51. 51.

    Jadhav AR, Bandal HA, Kim H (2017) Mater Lett 198:50–53

    CAS  Google Scholar 

  52. 52.

    Ding X-L, Yuan X, Jia C, Ma Z-F (2010) Int J Hydrogen Energy 35:11077–11084

    CAS  Google Scholar 

  53. 53.

    Nie M, Zou Y, Huang Y, Wang J (2012) Int J Hydrogen Energy 37:1568–1576

    CAS  Google Scholar 

  54. 54.

    Patel N, Fernandes R, Miotello A (2010) J Catal 271:315–324

    CAS  Google Scholar 

  55. 55.

    Saka C, Şahin Ö, Demir H, Karabulut A, Sarikaya A (2015) Energy Sources Part A 37:956–964

    CAS  Google Scholar 

  56. 56.

    Lan D, Qin M, Yang R, Chen S, Wu H, Fan Y, Fu Q, Zhang F (2019) J Colloid Interface Sci 533:481–491

    CAS  PubMed  Google Scholar 

  57. 57.

    Loghmani MH, Shojaei AF (2013) Int J Hydrogen Energy 38:10470–10478

    CAS  Google Scholar 

  58. 58.

    Hsueh C-L, Chen C-Y, Ku J-R, Tsai S-F, Hsu Y-Y, Tsau F, Jeng M-S (2008) J Power Sources 177:485–492

    CAS  Google Scholar 

  59. 59.

    Liu C-H, Chen B-H, Hsueh C-L, Ku J-R, Tsau F, Hwang K-J (2009) Appl Catal B 91:368–379

    CAS  Google Scholar 

  60. 60.

    Zhao Y, Ning Z, Tian J, Wang H, Liang X, Nie S, Yu Y, Li X (2012) J Power Sources 207:120–126

    CAS  Google Scholar 

  61. 61.

    Wei L, Dong X, Ma M, Lu Y, Wang D, Zhang S, Zhao D, Wang Q (2018) Int J Hydrogen Energy 43:1529–1533

    CAS  Google Scholar 

  62. 62.

    Huang Y, Wang K, Cui L, Zhu W, Asiri AM, Sun X (2016) Catal Commun 87:94–97

    CAS  Google Scholar 

  63. 63.

    Bandal HA, Jadhav AR, Kim H (2017) J Alloy Compd 699:1057–1067

    CAS  Google Scholar 

  64. 64.

    Aman D, Alkahlawy AA, Zaki T (2018) Int J 39:18289–18295

    Google Scholar 

  65. 65.

    Jadhav AH, Chinnappan A, Hiremath V, Seo JG (2015) J Nanosci Nanotechnol 15:8243–8250

    CAS  PubMed  Google Scholar 

  66. 66.

    Jadhav AH, Mai XT, Appiah-Ntiamoah R, Lee H, Momade FW, Seeo JG, Kim H (2015) J Nanosci Nanotechnol 10:7980–7987

    Google Scholar 

  67. 67.

    Jadhav AH, Prasad D, Jadhav HS, Nagaraja BM, Seo JG (2018) Energy 160:635–647

    CAS  Google Scholar 

  68. 68.

    Jadhav AH, Kim H, Hwang IT (2013) Biores Technol 132:342–350

    CAS  Google Scholar 

  69. 69.

    Prasad D, Patil KN, Sandhya N, Chaitra CR, Bhanushali JT, Samal AK, Keri RS, Jadhav AH, Nagaraja BM (2019) Appl Surf Sci 489:538–551

    CAS  Google Scholar 

  70. 70.

    Prasad D, Patil KN, Bhanushali JT, Nagaraja BM, Jadhav AH (2019) Catal Sci Technol 9:4393–4412

    CAS  Google Scholar 

  71. 71.

    Bhanushali JT, Prasad D, Patil KN, Babu GV, Kainthla I, Kamaraju SR, Jadhav AH, Nagaraja BM (2019) New J Chem 43:11968–11983

    CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Centre for Nano and Material Sciences (CNMS), JAIN (Deemed to be University), Bangalore for funding support through the basic research grant of JAIN (No-11(39)/17/005/2017SG). The authors also acknowledge Nano Mission Project SR/NM/NS-20/2014, DST, Government of India, for providing FESEM and XRD facility.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bhari Mallanna Nagaraja or Arvind H. Jadhav.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patil, K.N., Prasad, D., Bhanushali, J.T. et al. Sustainable Hydrogen Generation by Catalytic Hydrolysis of NaBH4 Using Tailored Nanostructured Urchin-like CuCo2O4 Spinel Catalyst. Catal Lett 150, 586–604 (2020). https://doi.org/10.1007/s10562-019-03025-w

Download citation

Keywords

  • CuCo2O4 spinel
  • Urchin-like morphology
  • Heterogeneous catalyst
  • Hydrogen generation
  • NaBH4 hydrolysis