Skip to main content
Log in

Production of Levulinic Acid via Cellulose Conversion Over Metal Oxide-Loaded MOF Catalysts in Aqueous Medium

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, Zr-MOF material (UiO-66) was modified with different metal oxides (CeO2, Ga2O3, and CoO) and employed in the conversion of cellulose to levulinic acid (LA) in aqueous medium. The research results showed that the introduction of the metal oxides increased the acid content of the catalysts, especially in medium-strong acid. The selectivity of LA was related to the type of metal oxide and the content of medium-strong acid. Due to the activity of Ga2O3 and more medium-strong acid, the yield of LA reaches a maximum yield of 32.0 mol% at 513 K for 360 min when Ga2O3-UiO-66 was employed as the catalysts. The combination of metal oxide and UiO-66 enables the reaction to proceed, providing a new direction for the conversion of cellulose to LA in the aqueous phase.

Graphic Abstract

In this study, Zr-MOFs material (UiO-66) was modified with different metal oxides (CeO2, Ga2O3, and CoO) and employed in the conversion of cellulose to levulinic acid in aqueous medium. The results indicated that the addition of metal oxides changes the acidity of UiO-66, which improves the catalytic activity. The selectivity of LA was related to the type of metal oxide and the content of medium-strong acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lund H, Afgan H, Bogdan Z, Duić N, Guzović Z (2007) Energy 32:912–919

    Article  Google Scholar 

  2. Balat M, Balat H (2010) Appl Energy 87:1815–1835

    Article  CAS  Google Scholar 

  3. Vispute TP, Zhang H, Sanna A, Xiao R, Huber H (2010) Science 330:1222–1227

    Article  CAS  Google Scholar 

  4. Kobayashi H, Ohta H, Fukuoka A (2012) Catal Sci Technol 2:869–883

    Article  CAS  Google Scholar 

  5. Zhang Z, Huber GW (2018) Chem Soc Rev 47:1351–1390

    Article  CAS  Google Scholar 

  6. Lin H, Strull J, Liu Y, Karmiol Z, Plank K, Miller G, Guo Z, Yang L (2012) Energy Environ Sci 5:9773

    Article  CAS  Google Scholar 

  7. Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Resour Conserv Recycl 28:227–239

    Article  Google Scholar 

  8. Fernandes DR, Rocha AS, Mai EF, Mota CJA, Silva VTD (2012) Appl Catal A 425–426:199–204

    Article  Google Scholar 

  9. Serrano-Ruiz JC, Pineda A, Balu AM, Luque R, Campelo JM, Romero AA, Ramos-Fernández JM (2012) Catal Today 195:162–168

    Article  CAS  Google Scholar 

  10. Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T (2006) Combust Sci Technol 178:509–536

    Article  CAS  Google Scholar 

  11. Li Y-X, Wei Z-Y, Liu L, Gao M-L, Han Z-B (2018) Inorg Chem Commun 88:47–50

    Article  CAS  Google Scholar 

  12. Weingarten R, Conner WC, Huber GW (2012) Energy Environ Sci 5:7559

    Article  CAS  Google Scholar 

  13. Shen J, Wyman CE (2012) AIChE J 58:236–246

    Article  CAS  Google Scholar 

  14. Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Molecules 15:5258–5272

    Article  CAS  Google Scholar 

  15. Chiappe C, Douton MJR, Mezzetta A, Guazzelli L, Pomelli CS, Angelis AD, Assanelli G (2017) New J Chem 42(3):1845–1852

    Article  Google Scholar 

  16. Wang P, Zhan SH, Yu HB (2010) Adv Mater Res 96:183–187

    Article  CAS  Google Scholar 

  17. Xiang M, Liu J, Fu W, Tang T, Wu D (2017) ACS Sustain Chem Eng 5:5800–5809

    Article  CAS  Google Scholar 

  18. Akiyama G, Matsuda R, Sato H, Takata M, Kitagawa S (2011) Adv Mater 23:3294–3297

    Article  CAS  Google Scholar 

  19. Herbst A, Janiak C (2016) New J Chem 40:7958–7967

    Article  CAS  Google Scholar 

  20. Su Y, Chang G, Zhang Z, Xing H, Su B, Yang Q, Ren Q, Yang Y, Bao Z (2016) AIChE J 62:4403–4417

    Article  CAS  Google Scholar 

  21. Gong J, Katz MJ, Kerton FM (2018) RSC Adv 8:31618–31627

    Article  CAS  Google Scholar 

  22. Zhang H, Nai J, Yu L, Lou XW (2017) Joule 1:77–107

    Article  CAS  Google Scholar 

  23. Herbst A, Janiak C (2017) CrystEngComm 19:4092–4117

    Article  CAS  Google Scholar 

  24. Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) Chem Commun 49:9449–9451

    Article  CAS  Google Scholar 

  25. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Chem Mater 22:6632–6640

    Article  CAS  Google Scholar 

  26. Sadeghi S, Jafarzadeh M, Reza Abbasi A, Daasbjerg K (2017) New J Chem 41:12014–12027

    Article  CAS  Google Scholar 

  27. Insyani R, Verma D, Kim SM, Kim J (2017) Green Chem 19:2482–2490

    Article  CAS  Google Scholar 

  28. Dong W, Feng C, Zhang L, Shang N, Gao S, Wang C, Wang Z (2015) Catal Lett 146:117–125

    Article  Google Scholar 

  29. Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M (2018) Appl Catal B 230:18–28

    Article  CAS  Google Scholar 

  30. Zheng J, Lei Z (2018) Appl Catal B 237:1–8

    Article  CAS  Google Scholar 

  31. Zeng W, Cheng DG, Zhang H, Chen F, Zhan X (2010) React Kinet Mech Catal 100:377–384

    CAS  Google Scholar 

  32. Jin F, Zhou Z, Enomoto H, Moriya T, Higashijima H (2004) Chem Lett 33:126–127

    Article  CAS  Google Scholar 

  33. Wattanapaphawong P, Reubroycharoen P, Yamaguchi A (2017) RSC Adv 7:18561–18568

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported financially by National Natural Science Foundation of China (No. 51708252), “the Fundamental Research Funds for the Central Universities” (No. 17lgpy71), National Science for Distinguished Young Scholars of China (No. 21425627), Guangdong Technology Research Center for Synthesis and Separation of Thermosensitive Chemicals (2015B090903061), and Science and Technology Innovation Teams Project of Huizhou (20131226121851953).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Chen or Wanbin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, Y., Wu, W. et al. Production of Levulinic Acid via Cellulose Conversion Over Metal Oxide-Loaded MOF Catalysts in Aqueous Medium. Catal Lett 150, 322–331 (2020). https://doi.org/10.1007/s10562-019-03023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03023-y

Keywords

Navigation