Stereoselective Reduction of Prochiral Cyclic 1,3-Diketones Using Different Biocatalysts


We have developed biocatalytic methods for the stereoselective reduction of cyclic prochiral 1,3-diketones for the production of optically active β-hydroxyketones and/or 1,3-diols. The recombinant ketoreductase KRED1-Pglu (formulated as purified catalyst) and whole cells of wild type Escherichia coli DE3 Star were used as biocatalysts, displaying different and sometimes complementary stereoselectivity, thus allowing the preparation of stereochemically pure β-hydroxyketones (12–66% isolated yields, > 99% e.e.) and 1,3-diols (40–60% isolated yields, > 99% e.e.).

Graphic Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4


  1. 1.

    Nakamura K, Matsuda T (2006) Curr Org Chem 10:1217–1246

    CAS  Article  Google Scholar 

  2. 2.

    Hoyos P, Sinisterra JV, Molinari F, Alcantara AR, Dominguez de Maria P (2010) Acc Chem Res 43:288–299

    CAS  Article  Google Scholar 

  3. 3.

    Sehl T, Hailes HC, Ward JM, Menyes U, Pohl M, Rother D (2014) Green Chem 16:3341–3348

    CAS  Article  Google Scholar 

  4. 4.

    Chen Y, Chen C, Wu X (2012) Chem Soc Rev 41:1742–1753

    CAS  Article  Google Scholar 

  5. 5.

    Kalaitzakis D, Rozzell JD, Smonou I, Kambourakis S (2006) Adv Synth Catal 348:1958–1969

    CAS  Article  Google Scholar 

  6. 6.

    Kalaitzakis D, Smonou I (2010) J Org Chem 75:8658–8661

    CAS  Article  Google Scholar 

  7. 7.

    Bataille CJR, Donohoe TJ (2011) Chem Soc Rev 40:114–128

    CAS  Article  Google Scholar 

  8. 8.

    Nguyen TN, Chen PA, Setthakarn K, May JA (2018) Molecules 23:2317

    Article  Google Scholar 

  9. 9.

    Paterson I, Chen DYK, Acena JL, Franklin AS (2000) Org Lett 2:1513–1516

    CAS  Article  Google Scholar 

  10. 10.

    Mukai K, Urabe D, Kasura S, Aoki N, Inoue MA (2013) Angew Chem Int Ed 52:5300–5304

    CAS  Article  Google Scholar 

  11. 11.

    Urabe D, Nakagawa Y, Mukai K, Fukushima K, Aoki N, Itoh H, Nagatomo M, Inoue M (2018) J Org Chem 83:13888–13910

    CAS  Article  Google Scholar 

  12. 12.

    Haberland J, Kriegesmann A, Wolfram E, Hummel W, Liese A (2002) Appl Microbiol Biotechnol 58:595–599

    CAS  Article  Google Scholar 

  13. 13.

    Grau BT, Devine PN, Di Michele LN, Kosjek B (2007) Org Lett 9:4951–4954

    CAS  Article  Google Scholar 

  14. 14.

    Lüdeke S, Richter M, Müller M (2009) Adv Synth Catal 351:253–259

    Article  Google Scholar 

  15. 15.

    Kurina-Sanz M, Bisogno FR, Lavandera I, Orden AA, Gotor V (2009) Adv Synth Catal 351:1842–1848

    CAS  Article  Google Scholar 

  16. 16.

    Husain SH, Stillger T, Dünkelmann P, Lödige M, Walter L, Breitling E, Pohl M, Bürchner M, Krossing I, Müller M, Romano D, Molinari F (2011) Adv Synth Catal 353:2359–2362

    CAS  Article  Google Scholar 

  17. 17.

    Mourelle-Insua A, de Gonzalo G, Lavandera I, Gotor-Fernández V (2018) Catalysts 8:150

    Article  Google Scholar 

  18. 18.

    Brooks W, Mazdiyasni M, Grothaus PG (1987) J Org Chem 52:3223–3232

    CAS  Article  Google Scholar 

  19. 19.

    Watanabe W, Iwamoto M, Nakada M (2005) J Org Chem 70:4652–4658

    CAS  Article  Google Scholar 

  20. 20.

    Kosmol H, Kieslich K, Vossing R, Koch HJ, Petzoldt K, Gibian H (1967) Justus Liebigs Ann Chem 701:199–205

    Article  Google Scholar 

  21. 21.

    Contente ML, Molinari F, Serra I, Pinto A, Romano D (2016) Eur J Org Chem 2016:1260–1263

    CAS  Article  Google Scholar 

  22. 22.

    Contente ML, Serra I, Brambilla M, Eberini I, Gianazza E, De Vitis V, Molinari F, Zambelli P, Romano D (2016) Appl Microbiol Biotechnol 100:193–201

    CAS  Article  Google Scholar 

  23. 23.

    Contente ML, Serra I, Molinari F, Gandolfi R, Pinto A, Romano D (2016) Tetrahedron 72:3974–3979

    CAS  Article  Google Scholar 

  24. 24.

    Contente ML, Molinari F, Zambelli P, De Vitis V, Gandolfi R, Pinto A, Romano D (2014) Tetrahedron Lett 55:7051–7053

    CAS  Article  Google Scholar 

  25. 25.

    Contente ML, Zambelli P, Galafassi S, Tamborini L, Pinto A, Conti P, Molinari F, Romano D (2015) J Mol Catal B 114:7–12

    CAS  Article  Google Scholar 

  26. 26.

    Contente ML, Serra I, Palazzolo L, Parravicini C, Gianazza E, Eberini I, Pinto A, Molinari F, Guidi B, Romano D (2016) Org Biomol Chem 14:3404–3408

    CAS  Article  Google Scholar 

  27. 27.

    Dall’Oglio F, Contente ML, Conti P, Molinari F, Monfredi D, Pinto A, Romano D, Ubiali D, Tamborini L (2017) Catal Commun 93:29–32

    Article  Google Scholar 

  28. 28.

    Manna MS, Mukherjee S (2014) Chem Sci 5:1627–1633

    CAS  Article  Google Scholar 

  29. 29.

    Byrne SJ, Fletcher AJ, Hebeisen P, Willis MC (2010) Org Biomol Chem 8:758–760

    CAS  Article  Google Scholar 

  30. 30.

    Oeggl R, Neumann T, Gätgens J, Romano D, Noack S, Rother D (2018) Front Bioeng Biotechnol 6:196

    Article  Google Scholar 

  31. 31.

    Yeung YY, Chein RJ, Corey EJ (2007) J Am Chem Soc 129:10346–10347

    CAS  Article  Google Scholar 

  32. 32.

    Kolakowski RV, Manpadi M, Zhang Y, Emge TJ, Williams LJ (2009) J Am Chem Soc 131:12910–12911

    CAS  Article  Google Scholar 

  33. 33.

    Salter GJ, Kell DB (1995) Crit Rev Biotechnol 15:139–177

    CAS  Article  Google Scholar 

Download references


The authors thank the University of Milan for funding the stay of Federica Dall’Oglio at the Biotechnology Forschungszentrum of Jülich.

Author information



Corresponding author

Correspondence to Andrea Pinto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 140 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Contente, M.L., Dall’Oglio, F., Annunziata, F. et al. Stereoselective Reduction of Prochiral Cyclic 1,3-Diketones Using Different Biocatalysts. Catal Lett 150, 1176–1185 (2020).

Download citation


  • Biocatalytic reduction
  • 1-3 diketones
  • β-hydroxyketones
  • 1,3-Diols
  • Enzymatic
  • Whole cells