Skip to main content
Log in

On-Filter Integration of Soot Oxidation and Selective Catalytic Reduction of NOx with NH3 by Selective Two Component Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A group of catalysts was developed with the purpose of enhancing the soot oxidation in the selective catalytic reduction on filter system, without negatively effecting the NOx conversion associated to NH3 oxidation. The impregnation with alkali metal of a series of supports, characterized by a lack of strong superficial acid sites, improved soot oxidation simultaneously preventing ammonia adsorption, thus its catalytic oxidation. Strong synergy was observed between a ZrO2–CeO2 support and potassium, decreasing the T50 of the soot conversion of 170 °C in loose contact. This catalyst was added to a Fe-ZSM5 selective catalytic reduction (SCR) catalyst without negative effect for the SCR activity. The complex interaction between the potassium-based soot oxidation catalyst and the SCR one was investigated. The soot–soot oxidation catalyst-SCR catalyst contact mode was found to be a key factor and the increased contact of the soot–soot oxidation catalyst is preferable. Such dual component catalyst system was demonstrated to be promising for simultaneous removal of NOx and soot on a single filter.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schejbal M, Stepanek J, Marek M, Koci P, Kubicek M (2010) Fuel 89:2365

    CAS  Google Scholar 

  2. Tomić MD, Savin LD, Mićić RD, Simikić MD, Furman TF (2013) Therm Sci 17:263

    Google Scholar 

  3. Shigapov A, Dubkov A, Ukropec R, Carberry B, Graham G, Chun W, McCabe R (2008) Kinet Catal 49:756

    CAS  Google Scholar 

  4. Tang W, Youngren D, SantaMaria M, Kumar S (2013) SAE Int J Engines 6:862

    Google Scholar 

  5. Watling TC, Ravenscroft MR, Avery G (2012) Catal Today 188:32

    CAS  Google Scholar 

  6. Lapuerta M, Oliva F, Agudelo JR, Boehman AL (2012) Combust Flame 159:844

    CAS  Google Scholar 

  7. Karamitros D, Koltsakis G (2017) Chem Eng Sci 173:514

    CAS  Google Scholar 

  8. Rappé KG (2014) Ind Eng Chem Res 53:17547

    Google Scholar 

  9. Neyertz CA, Miró EE, Querini CA (2012) Chem Eng J 181–182:93

    Google Scholar 

  10. Weng D, Li J, Wu X, Si Z (2011) J Environ Sci 23:145

    CAS  Google Scholar 

  11. Kumar PA, Tanwar MD, Bensaid S, Russo N, Fino D (2012) Chem Eng J 207–208:258

    Google Scholar 

  12. Corro G, Flores A, Pacheco-Aguirre F, Pal U, Bañuelos F, Ramirez A, Zehe A (2019) Fuel 250:17

    CAS  Google Scholar 

  13. Metkar PS, Harold MP, Balakotaiah V (2012) Appl Catal B Environ 111:67

    Google Scholar 

  14. Wittka T, Holderbaum B, Dittmann P, Pischinger S (2015) Emiss Control Sci Technol 1:167

    CAS  Google Scholar 

  15. Myung CL, Jang W, Kwon S, Ko J, Jin D, Park S (2017) Energy 132:356

    CAS  Google Scholar 

  16. Bensaid S, Balakotaiah V, Luss D (2017) AIChE J 63:238

    CAS  Google Scholar 

  17. Mihai O, Tamm S, Stenfeldt M, Olsson L (2016) Philos Trans R Soc A 374: 20150086

  18. Marchitti F, Nova I, Tronconi E (2016) Catal Today 267:110

    CAS  Google Scholar 

  19. Czerwinski J, Zimmerli Y, Mayer A, D’Urbano G, Zürcher D (2015) Emiss Control Sci Technol 1:152

    CAS  Google Scholar 

  20. Park SY, Narayanaswamy K, Schmieg SJ, Rutland CJ (2012) Ind Eng Chem Res 51:15582

    CAS  Google Scholar 

  21. Wolff T, Deinlein R, Christensen H, Larsen L (2014) SAE Int J Mater Manuf 7:671

    Google Scholar 

  22. Shimokawa H, Kurihara Y, Kusaba H, Einaga H, Teraoka Y (2012) Catal Today 185:99

    CAS  Google Scholar 

  23. Davies C, Thompson K, Cooper A, Golunski S, Taylor SH, Bogarra Macias M, Doustdar O, Tsolakis A (2018) Appl Catal B 239:10

    CAS  Google Scholar 

  24. Jiménez R, García X, Cellier C, Ruiz P, Gordon AL (2006) Appl Catal A 297:125

    Google Scholar 

  25. Zhang Y, Su Q, Li Q, Wang Z, Gao X, Zhang Z (2011) Chem Eng Technol 34:1864

    CAS  Google Scholar 

  26. Ogura M, Kimura R, Ushiyama H, Nikaido F, Yamashita K, Okubo T (2014) ChemCatChem. 6:479

    CAS  Google Scholar 

  27. Li Q, Wang X, Xin Y, Zhang Z, Zhang Y, Hao C, Meng M, Zheng L, Zheng L (2014) Sci Rep 4:4725

    PubMed  PubMed Central  Google Scholar 

  28. Yang Z, Hu W, Zhang N, Li Y, Liao Y (2019) J Catal 337:98

    Google Scholar 

  29. Aneggi E, Divins N, Leitenburg C, Llorca J, Trovarelli A (2014) J Catal 312:191

    CAS  Google Scholar 

  30. Mizutani K, Takizawa K, Shimokawa H, Suzawa T, Ohyama N (2013) Top Catal 56:473

    CAS  Google Scholar 

  31. Bisaiji Y, Yoshida K, Inoue M, Umemoto K, Fukuma T (2011) SAE Int J Fuels Lubr 5:380

    Google Scholar 

  32. Hou N, Zhang Y, Meng M (2013) J Phys Chem C 117:4089

    CAS  Google Scholar 

  33. Wang Q, Sohn JH, Park SY, Choi JS, Lee JY, Chung JS (2010) J Ind Eng Chem 16:68

    CAS  Google Scholar 

  34. Peng Y, Li J, Huang X, Li X, Su W, Sun X, Wang D, Hao J (2014) Environ Sci Technol 48:4515

    CAS  PubMed  Google Scholar 

  35. Sánchez BS, Querini CA, Miró EE (2011) Appl Catal A 392:158

    Google Scholar 

  36. Matarrese R, Aneggi E, Castoldi L, Llorca J, Trovarelli A, Lietti L (2016) Catal Today 267:119

    CAS  Google Scholar 

  37. Castoldi L, Artioli N, Matarrese R, Lietti L, Forzatti P (2010) Catal Today 157:384

    CAS  Google Scholar 

  38. Sinhamahapatra A, Jeon JP, Kang J, Han B, Yu JS (2016) Sci Rep 6:27218

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Guillén-Hurtado N, García-García A, Bueno-López A (2013) J Catal 299:181

    Google Scholar 

  40. Castoldi L, Matarrese R, Lietti L, Forzatti P (2006) Appl Catal B 64:25

    CAS  Google Scholar 

  41. Peralta MA, Zanuttini MS, Ulla MA, Querini CA (2011) Appl Catal A 399:161

    CAS  Google Scholar 

  42. Iwasaki M, Shinjoh H (2010) Appl Catal A 390:71

    CAS  Google Scholar 

  43. Metkar PS, Harold MP, Balakotaiah V (2013) Chem Eng Sci 87:51

    CAS  Google Scholar 

  44. Kamasamudram K, Currier N, Szailer T, Yezerets A (2010) SAE Int J Fuels Lubr 3:664

    CAS  Google Scholar 

  45. Kamatani K, Higuchi K, Yamamoto Y, Arai S, Tanaka N, Ogura M (2015) Sci Rep 5:10161

    PubMed  PubMed Central  Google Scholar 

  46. Selleri T, Gramigni F, Nova I, Tronconi E, Dieterich S, Weibel M, Schmeisser V (2018) Catal Sci Technol 8:2467

    CAS  Google Scholar 

  47. Fino D, Bensaid S, Piumetti M, Russo N (2016) Appl Catal A 509:75

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded through a SINCHEM Grant. SINCHEM is a Joint Doctorate programme selected under the Erasmus Mundus Action 1 Programme (FPA 2013-0037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Alessandro Deorsola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2023 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinovic, F., Andana, T., Deorsola, F.A. et al. On-Filter Integration of Soot Oxidation and Selective Catalytic Reduction of NOx with NH3 by Selective Two Component Catalysts. Catal Lett 150, 573–585 (2020). https://doi.org/10.1007/s10562-019-03012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03012-1

Keywords

Navigation