Skip to main content
Log in

Enhancing the Sonolysis Efficiency of SrTiO3 Particles with Cr-Doping

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Sonolysis could be more practical for water treatment than traditional catalytic methods in some specific situations. However, the practical application is limited by the low degradation rate. In this work, the Cr doped SrTiO3 was prepared by hydrothermal method, and the Cr-doping results in the decreased crystal symmetry, which leads to the rough surface and a large number of pores of the sample. The appearance of a large number of holes increases the specific surface area and enhances the gas adsorption performance of the sample, which can promote the cavitation. The optimized Cr-doped SrTiO3 can degrade 95.4% rhodamine B (5 mg/L) in 10 min under ultrasound irradiation (53 kHz, 350 W). Furthermore, the improvement of sonolysis degradation with the Cr doped SrTiO3 is universal for dyes, such as methyl blue (MB), methyl orange (MO) and rhodamine B (RhB). The role of active species in ultrasonic catalysis and the synergistic mechanism of ultrasound and catalyst were systematically studied by adding sacrificial agents and changing the reaction atmosphere. This work indicates that the incorporation of finely modified inorganic particles is effective for efficient water treatment.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang Y, Cheng R, Wen Z, Zhao L (2012) Chem Eng J 203:277–284

    Article  CAS  Google Scholar 

  2. Glaze WH, Kang JW, Chapin DH (1987) Ozone Sci Eng 9:335–352

    Article  CAS  Google Scholar 

  3. O’Shea KE, Dionysiou DD (2012) J Phys Chem Lett 3:2112–2113

    Article  Google Scholar 

  4. Gültekin I, Ince NH (2007) J Environ Manag 85:816–832

    Article  Google Scholar 

  5. Suslick KS (1990) Science 247:1439–1445

    Article  CAS  Google Scholar 

  6. Chen X, Dai J, Shi G, Li L, Wang G, Yang H (2016) Ultrason Sonochem 29:172–177

    Article  CAS  Google Scholar 

  7. Lee G, Ibrahim S, Kittappa S, Park H, Park CM (2018) Ultrason Sonochem 44:64–72

    Article  CAS  Google Scholar 

  8. Qiu P, Li W, Kang K, Park B, Luo W, Zhao D, Khim J (2014) J Mater Chem A 2:16452–16458

    Article  CAS  Google Scholar 

  9. Suslick KS, Doktycz SJ, Flint EB (1990) Ultrasonics 28:280–290

    Article  CAS  Google Scholar 

  10. Ashokkumar M, Grieser F (2005) J Am Chem Soc 127:5326–5327

    Article  CAS  Google Scholar 

  11. Shchukin DG, Skorb E, Belova V, Möhwald H (2011) Adv Mater 23:1922–1934

    Article  CAS  Google Scholar 

  12. Roldugin V, Tikhonov N (2002) Doklady Phys Chem 383:84–87

    Article  CAS  Google Scholar 

  13. Hong K-S, Xu H, Konishi H, Li X (2010) J Phys Chem Lett 1:997–1002

    Article  CAS  Google Scholar 

  14. Tu S, Huang H, Zhang T, Zhang Y (2017) Appl Catal B 219:550–562

    Article  CAS  Google Scholar 

  15. Ouyang S, Tong H, Umezawa N, Cao J, Li P, Bi Y, Zhang Y, Ye J (2012) J Am Chem Soc 134:1974–1977

    Article  CAS  Google Scholar 

  16. Hu Y, Tan OK, Pan JS, Yao X (2004) J Phys Chem B 108:11214–11218

    Article  CAS  Google Scholar 

  17. Salvador P, Gutiérrez C (1984) J Electroanal Chem Interfacial Electrochem 160:117–130

    Article  CAS  Google Scholar 

  18. Wang L, Zhou Y, Timoshenko J, Liu S, Qiao Q, Kisslinger K, Cuiffo M, Chuang Y-C, Zuo X, Xue Y, Guo Y, Pan C, Li H, Nam C-Y, Bliznakov S, Liu P, Frenkel AI, Zhu Y, Rafailovich MH (2019) ACS Catal 9:1446–1456

    Article  CAS  Google Scholar 

  19. Shirai S, Sato S, Suzuki TM, Jinnouchi R, Ohba N, Asahi R, Morikawa T (2018) J Phys Chem C 122:1921–1929

    Article  CAS  Google Scholar 

  20. Zhang H, Qiao J, Li G, Li S, Wang G, Wang J, Song Y (2018) Ultrason Sonochem 42:356–367

    Article  CAS  Google Scholar 

  21. Zhou M, Yang H, Xian T, Li RS, Zhang HM, Wang XX (2015) J Hazard Mater 289:149–157

    Article  CAS  Google Scholar 

  22. Zhu L, Ghosh T, Park C-Y, Meng Z-D, Oh W-C (2012) Chin J Catal 33:1276–1283

    Article  CAS  Google Scholar 

  23. Wu Y, Song L, Zhang S, Wu X, Zhang S, Tian H, Ye J (2013) Catal Commun 37:14–18

    Article  CAS  Google Scholar 

  24. Farhadi S, Siadatnasab F, Khataee A (2017) Ultrason Sonochem 37:298–309

    Article  CAS  Google Scholar 

  25. Song L, Zhang S, Wu X, Wei Q (2012) Ultrason Sonochem 19:1169–1173

    Article  CAS  Google Scholar 

  26. Lv M, Xie Y, Wang Y, Sun X, Wu F, Chen H, Wang S, Shen C, Chen Z, Ni S, Liu G, Xu X (2015) Phys Chem Chem Phys 17:26320–26329

    Article  CAS  Google Scholar 

  27. Hui J, Zhang G, Ni C, Irvine JTS (2017) Chem Commun 53:10038–10041

    Article  CAS  Google Scholar 

  28. Lan S, Feng J, Xiong Y, Tian S, Liu S, Kong L (2017) Environ Sci Technol 51:6560–6569

    Article  CAS  Google Scholar 

  29. Wang Y, Chen L, Chen C, Xi J, Cao H, Duan X, Xie Y, Song W, Wang S (2019) Appl Catal B 254:283–291

    Article  CAS  Google Scholar 

  30. Darvishi Cheshmeh Soltani R, Jorfi S, Ramezani H, Purfadakari S (2016) Ultrason Sonochem 28:69–78

    Article  CAS  Google Scholar 

  31. Ghosh T, Ullah K, Nikam V, Park C-Y, Meng Z-D, Oh W-C (2013) Ultrason Sonochem 20:768–776

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Anhui Provincial Natural Science Foundation (1908085ME119),the National Key Research and Development Program of China (2016YFA0401004, 2017YFA0402904), Anhui Initiative in Quantum Information Technologies (AHY100000), the National Natural Science Foundation of China (51627901) and the Open Programs for the Key Science & Technology Infrastructures of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengping Fu or Yalin Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Gu, W., Zou, W. et al. Enhancing the Sonolysis Efficiency of SrTiO3 Particles with Cr-Doping. Catal Lett 150, 562–572 (2020). https://doi.org/10.1007/s10562-019-03008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03008-x

Keywords

Navigation