Skip to main content
Log in

A Comparative Study on C2 Hydrocarbons and Methanol Synthesis from CO Hydrogenation Catalyzed by M1/W6S8 (M = Ir and Ca) Single-Atom Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Exploring highly selective catalysts for CO hydrogenation reactions remains a significant challenge as a critical stage in the conversion of CO resources into chemicals or fuels. Here, we provide guidelines on this issue, exploring the generation of major production in the CO hydrogenation process of M1/W6S8 (M = Ir and Ca) single-atom catalysts, and performing density functional calculations. Calculate the reaction energy and barrier for each basic step. Calculations represent that the Ca1/W6S8 catalyst is very advantageous for methanol synthesis (CO* + 4H* → CHO* + 3H* → CH2O* + 3H* → CH3O* + H* → CH3OH*). On the other hand, the Ir1/W6S8 catalyst strongly favors the production of C2 hydrocarbons. We use the harmonic transition state theory to calculate the rate constant of the subsequent step of converting CH3O* species on M1/W6S8 (M = Ir and Ca). The results of the rate constants are consistent with our kinetic results. These results add new insights into the basic understanding of complex CO hydrogenation reactions.

Graphic Abstract

A series of reactions starting from CO on the (a) Ir1/W6S8, (b) Ca1/W6S8. The activation barriers and reaction energies of the elementary steps are all shown in kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Field CB, Mach KJ (2017) Rightsizing carbon dioxide removal. Science 356:706–707

    CAS  PubMed  Google Scholar 

  2. Tollefson J (2009) World looks ahead post-Copenhagen. Nature 462:966–967

    CAS  PubMed  Google Scholar 

  3. Wei Z, Sun J, Li Y et al (2012) Bimetallic catalysts for hydrogen generation. Chem Soc Rev 41:7994–8008

    CAS  PubMed  Google Scholar 

  4. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098

    CAS  PubMed  Google Scholar 

  5. Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal A 138:319–344

    CAS  Google Scholar 

  6. Dry ME (2002) High quality diesel via the Fischer-Tropsch process-a review. J Chem Technol Biotechnol 77:43–50

    CAS  Google Scholar 

  7. Gong XQ, Raval R, Hu P (2004) CO dissociation and O removal on Co(0001): a density functional theory study. Surf Sci 562:247–256

    CAS  Google Scholar 

  8. Overett MJ, Hill RO, Moss JR (2000) Organometallic chemistry and surface science mechanistic models for the Fischer-Tropsch synthesis. Coord Chem Rev 206:581–605

    Google Scholar 

  9. Ciobîca IM, Kramer GJ, Ge Q et al (2002) Mechanisms for chain growth in Fischer-Ttropsch synthesis over Ru(0001). J Catal 212:136–144

    Google Scholar 

  10. Liu ZP, Hu P (2002) A new insight into Fischer-Tropsch synthesis. J Am Chem Soc 124:11568–11569

    CAS  PubMed  Google Scholar 

  11. Dry ME (2002) The Fischer-Tropsch process: 1950-2000. Catal Today 71:227–241

    CAS  Google Scholar 

  12. O”Byrne JP, Owen RE, Minett DR et al (2013) High CO2 and CO conversion to hydrocarbons using bridged Fe nanoparticles on carbon nanotubes. Catal Sci Technol 3:1202–1207

    Google Scholar 

  13. Du G, Lim S, Yang Y et al (2007) Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: the influence of catalyst pretreatment and study of steady-state reaction. J Catal 249:370–379

    CAS  Google Scholar 

  14. Dorner RW, Hardy DR, Williams FW et al (2009) Influence of gas feed composition and pressure on the catalytic conversion of CO2 to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst. Energy Fuels 23:4190–4195

    CAS  Google Scholar 

  15. Yang C, Zhao H, Hou Y et al (2012) Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. J Am Chem Soc 134:15814–15821

    CAS  PubMed  Google Scholar 

  16. Elahifard MR, Fazeli E, Joshani A et al (2013) Ab-initio calculations of the CO adsorption and dissociation on substitutional Fe-Cu surface alloys relevant to Fischer-Tropsch synthesis: bcc-(Cu)Fe(100) and fcc-(Fe)Cu(100). Surf Interface Anal 45:1081–1087

    CAS  Google Scholar 

  17. Torrente-Murciano L, Chapman RS, Narvaez-Dinamarca A et al (2016) Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO into hydrocarbons. Phys Chem Chem Phys 18:15496–15500

    CAS  PubMed  Google Scholar 

  18. Weatherbee GD, Bartholomew CH (1984) Hydrogenation of CO2 on group VIII metals: IV. specific activities and selectivities of silicasupported Co, Fe, and Ru. J Catal 87:352–362

    CAS  Google Scholar 

  19. Kishan G, Lee MW, Nam SS et al (1998) The catalytic conversion of CO2 to hydrocarbons over Fe-K supported on Al2O3-MgO mixed oxides. Catal Lett 56:215–219

    CAS  Google Scholar 

  20. Zhao YH, Hao QQ, Song YH et al (2013) Cobalt supported on alkaline-activated montmorillonite as an efficient catalyst for Fischer-Tropsch synthesis. Energy Fuels 27:6362–6371

    CAS  Google Scholar 

  21. Fischer F, Tropsch H (1926) Synthesis of petroleum at atmospheric pressure from gasification products of coal. Brennstoff-Chemie 7:97–104

    CAS  Google Scholar 

  22. Henrici-Olive G, Olive ́ S (1976) The Fischer-Tropsch synthesis: nolecular weight distribution of primary products and reaction mechanism. Angew Chem Int Ed Engl 15:136–141

    Google Scholar 

  23. van Santen RA, Markvoort AJ (2013) Chain growth by CO insertion in the Fischer-Tropsch reaction. ChemCatChem 5:3384–3397

    Google Scholar 

  24. Hindermann JP, Hutchings GJ, Kiennemann A (1993) Mechanistic aspects of the formation of hydrocarbons and alcohols from CO hydrogenation. Catal Rev Sci Eng 35:1–127

    CAS  Google Scholar 

  25. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744

    CAS  PubMed  Google Scholar 

  26. Rofer-DePoorter CKA (1981) Comprehensive mechanism for the Fischer-Tropsch synthesis. Chem Rev 81:447–474

    CAS  Google Scholar 

  27. Liu J (2017) Catalysis by supported single metal atoms. ACS Catal 7:34–59

    CAS  Google Scholar 

  28. Yang S, Tak YJ, Kim J et al (2017) Support effects in single atom platinum catalysts for electrochemical oxygen reduction. ACS Catal 7:1301–1307

    CAS  Google Scholar 

  29. Xuan W, Lili Z, Jiaye J et al (2018) Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals. Science 361:912–916

    Google Scholar 

  30. Liu P, Choi Y, Yang Y et al (2010) Methanol synthesis from H2 and CO2 on a Mo6S8 cluster: a density functional study. J Phys Chem A 114:3888–3895

    CAS  PubMed  Google Scholar 

  31. Liu C, Liu P (2015) Mechanistic study of methanol synthesis from CO2 and H2 on a modified model Mo6S8 cluster. ACS Catal 5:1004–1012

    CAS  Google Scholar 

  32. Yvon K (1979) Current topics in materials science, vol 3. North-Holland Publishing, Amsterdam

    Google Scholar 

  33. Perruchas S, Flores S, Jousselme B et al (2007) [W6S8] Octahedral tungsten clusters functionalized with thiophene derivatives: toward polymerizable building blocks. Inorg Chem 46:8976–8987

    CAS  PubMed  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.1. Gaussian Inc., Wallingford, CT

    Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  36. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115:2315–2372

    CAS  Google Scholar 

  37. Li M, Chen J, Wang G (2016) Reaction mechanism of ethanol on model cobalt catalysts: DFT calculations. J Phys Chem C 120:14198–14208

    CAS  Google Scholar 

  38. Xing SK, Wang GC (2013) Reaction mechanism of ethanol decomposition on Mo2C(100) investigated by the first principles study. J Mol Catal A 377:180–189

    CAS  Google Scholar 

  39. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–311

    CAS  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  PubMed  Google Scholar 

  41. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    CAS  Google Scholar 

  42. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure: IV constants of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  43. Wynne-Jones WFK, Eyring H (1935) The absolute rate of reactions in condensed phases. J Chem Phys 3:492–502

    CAS  Google Scholar 

  44. McQuarrie DA (2000) Statistical mechanics, 2nd edn. University Science Books, Sausalito, CA

    Google Scholar 

  45. Jin S, Disalvo FJ (2002) 3-D coordination network structures constructed from [W6S8(CN)6]6− anions. Chem Mater 40:3448–3457

    Google Scholar 

  46. Ehrlich GM, Warren CJ, Vennosn DA et al (1995) Synthesis, structure, and characterization of N-Ligated W6S8L6 cluster complexes. Inorg Chem 34:4454–4459

    CAS  Google Scholar 

  47. Shetty S, Jansen APJ, Santen RAV (2009) Direct versus hydrogen-assisted CO dissociation. J Am Chem Soc 131:12874–12875

    CAS  PubMed  Google Scholar 

  48. Ojeda M, Nabar R, Nilekar AU et al (2010) CO activation pathways and the mechanism of Fischer − Tropsch synthesis. J Catal 272:287–297

    CAS  Google Scholar 

  49. Yang J, Qi YY, Zhu J et al (2013) Reaction mechanism of CO activation and methane formation on Co Fischer − Tropsch catalyst: a combined DFT, transient, and steady-state kinetic modeling. J Catal 308:37–49

    CAS  Google Scholar 

  50. Liu J, Su HY, Sun DP et al (2013) Crystallographic dependence of CO dctivation on cobalt catalysts: HCP versus FCC. J Am Chem Soc 135:16284–16287

    CAS  PubMed  Google Scholar 

  51. Lu XQ, Deng ZG, Wei SX et al (2015) CO tolerance of a Pt3Sn(111) catalyst in ethanol decomposition. Catal Sci Technol 5:3246–3258

    CAS  Google Scholar 

  52. Li HJ, Chang CC, Ho JJ (2011) Density functional calculations to study the mechanism of the Fischer-Tropsch reaction on Fe(111) and W(111) surfaces. J Phys Chem C 115:11045–11055

    CAS  Google Scholar 

  53. Zhao YH, Sun K, Ma X et al (2011) Carbon chain growth by formyl insertion on rhodium and cobalt catalysts in syngas conversion. Angew Chem Int Ed 50:5335–5338

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “1331” project of Shanxi Province, High School 131 Leading Talent Project of Shanxi, the Natural Science Foundation of Shanxi, and Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province, Graduate student innovation project of Shanxi Normal University (01053017). Shanxi Graduate Education Innovation Project (2019SY298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Han, Y., Guo, S. et al. A Comparative Study on C2 Hydrocarbons and Methanol Synthesis from CO Hydrogenation Catalyzed by M1/W6S8 (M = Ir and Ca) Single-Atom Catalysts. Catal Lett 150, 1515–1526 (2020). https://doi.org/10.1007/s10562-019-03007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03007-y

Keywords

Navigation