Can Immobilization of an Inactive Iron Species Switch on Catalytic Activity in the Suzuki Reaction?

Abstract

We examined the synthetic and catalytic claims that immobilization of an Fe-PNP pincer complex (1) on an amine-modified graphene oxide support yields a useful heterogeneous catalyst for the Suzuki biaryl cross-coupling reaction. Complex 1 is not formed under the reported conditions, rather the iron sulfate heptahydrate starting material (melanterite) undergoes partial dehydration to give iron sulfate tetrahydrate (rozenite). Neither rozenite nor melanterite are catalytically competent.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    CAS  Article  Google Scholar 

  2. 2.

    Valente C, Organ MG (2011) In: Hall DG (ed) Boronic acids. Wiley-VCH, Weinheim, pp 213–262

    Google Scholar 

  3. 3.

    Garrett CE, Prasad K (2004) The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd- catalyzed reactions. Adv Synth Catal 346:889–900

    CAS  Article  Google Scholar 

  4. 4.

    Guideline on the Specification Limits for Residues of Metal Catalysts or Metal Reagents, (Doc.Ref. EMEA/CHMP/SWP/4446/2000). Committee for Medicinal Products for Human Use (CHMP); European Medicines Agency: London, Feb 2008; pp 1–34

  5. 5.

    Neely JM, Bezdek MJ, Chirik PJ (2016) Insight into transmetalation enables cobalt-catalyzed Suzuki–Miyaura cross coupling. ACS Cent Sci 2:935–942

    CAS  Article  Google Scholar 

  6. 6.

    Asghar S, Tailor SB, Elorriaga D, Bedford RB (2017) Cobalt-catalyzed Suzuki biaryl coupling of aryl halides. Angew Chem Int Ed 56:16367–16370

    CAS  Article  Google Scholar 

  7. 7.

    Duong HA, Wu W, Teo Y-Y (2017) Cobalt-catalyzed cross- coupling reactions of arylboronic esters and aryl halides. Organometallics 36:4363–4366

    CAS  Article  Google Scholar 

  8. 8.

    Tailor SB, Manzotti M, Asghar S, Rowsell BJS, Luckham SLJ, Sparkes HA, Bedford RB (2019) Revisiting claims of the iron-, cobalt-, nickel-, and copper-catalyzed suzuki biaryl cross-coupling of aryl halides with aryl boronic acids. Organometallics 38:1770–1777

    CAS  Article  Google Scholar 

  9. 9.

    Bedford RB, Hall MA, Hodges GR, Huwe M, Wilkinson MC (2009) Simple mixed Fe–Zn catalysts for the Suzuki couplings of tetraarylborates with benzyl halides and 2-halopyridines. Chem Commun 42:6430–6432

    Article  Google Scholar 

  10. 10.

    Bedford RB, Gallagher T, Pye DR, Savage W (2015) Towards iron-catalysed Suzuki Biaryl cross-coupling: unusual reactivity of 2-halobenzyl halides. Synthesis 47:1761–1765

    CAS  Article  Google Scholar 

  11. 11.

    O’Brien HM, Manzotti M, Abrams RD, Elorriaga D, Sparkes HA, Davis SA, Bedford RB (2018) Iron-catalysed substrate- directed Suzuki biaryl cross-coupling. Nat Catal 1:429–437

    Article  Google Scholar 

  12. 12.

    Kylmälä T, Valkonen A, Rissanen K, Xu Y, Franzén R (2009) Retraction notice to “trans-Tetrakis(pyridine)dichloroiron(II) as catalyst for Suzuki cross-coupling in ethanol and water”. Tetrahedron Lett 50:5692

    Article  Google Scholar 

  13. 13.

    Bézier D, Darcel C (2009) Retraction: iron-catalyzed Suzuki-Miyaura cross-coupling reaction. Adv Synth Catal 351:1732–1736

    Article  Google Scholar 

  14. 14.

    Bedford RB, Nakamura M, Gower NJ, Haddow MF, Hall MA, Huwe M, Hashimoto T, Okopie RA (2009) Iron-catalysed Suzuki coupling? A cautionary tale. Tetrahedron Lett 50:6110–6111

    CAS  Article  Google Scholar 

  15. 15.

    Kumar LM, Bhat BR (2017) Cobalt pincer complex catalyzed Suzuki-Miyaura cross coupling—a green approach. J Organomet Chem 827:41–48

    CAS  Article  Google Scholar 

  16. 16.

    Kumar LM, Ansari RM, Bhat BR (2017) Catalytic activity of Fe(II) and Cu(II) PNP pincer complexes for Suzuki coupling reaction. Appl Organomet Chem 32:e4054

    Article  Google Scholar 

  17. 17.

    Ansari RM, Bhat BR (2017) Schiff base transition metal complexes for Suzuki–Miyaura cross-coupling reaction. J Chem Sci 129:1483–1490

    CAS  Article  Google Scholar 

  18. 18.

    Ansari RM, Kumar LM, Bhat BR (2018) Air-stable cobalt(II) and nickel(II) complexes with schiff base ligand for catalyzing Suzuki–Miyaura cross-coupling reaction. Russ J Coord Chem 44:1–8

    CAS  Article  Google Scholar 

  19. 19.

    Ansari RM, Mahesh LK, Bhat BR (2018) Cobalt schiff base complexes: synthesis characterization and catalytic application in suzuki-Miyaura reaction. J Chem Eng, Chin. https://doi.org/10.1016/j.cjche.2018.05.002

    Article  Google Scholar 

  20. 20.

    Saroja A, Bhat BR (2019) Cobalt schiff base immobilized on a graphene nanosheet with N, O Linkage for cross-coupling reaction. Ind Eng Chem Res 58:590–601

    CAS  Article  Google Scholar 

  21. 21.

    Kumar LM, Mishra P, Bhat BR (2019) Fe–PNP pincer complex immobilized on graphene oxide as a catalyst for Suzuki-Miyaura coupling reactions. Catal Lett 149:1118–1124

    CAS  Article  Google Scholar 

  22. 22.

    Baur WH (1962) Zur Kristallchemie der Salzhydrate. Die Kristallstrukturen von MgSO4.4H2O (leonhardtit) und FeSO4.4H2O (rozenit). Acta Cryst 15:815–826

    CAS  Article  Google Scholar 

  23. 23.

    CCDC Search performed 11th July 2019

  24. 24.

    Glatz M, Schrōder-Holzhacker C, Bichler B, Stōger B, Mereiter K, Veiros LF, Kirchner K (2016) Synthesis and characterization of cationic dicarbonyl Fe(II) PNP pincer complexes. Monatsh Chem 147:1713–1719

    CAS  Article  Google Scholar 

  25. 25.

    Glatz M, Bichler B, Mastalir M, Stöger B, Weil M, Mereiter K, Pittenauer E, Allmaier G, Veiros LF, Kirchner K (2015) Iron(II) complexes featuring κ3- and κ2-bound PNP pincer ligands – the significance of sterics. Dalton Trans 44:281–294

    CAS  Article  Google Scholar 

  26. 26.

    Benito-Garagorri D, Wiedermann J, Pollak M, Mereiter K, Kirchner K (2007) Iron(II) complexes bearing tridentate PNP pincer-type ligands as catalysts for the selective formation of 3-hydroxyacrylates from aromatic aldehydes and ethyldiazoacetate. Organometallics 26:217–222

    CAS  Article  Google Scholar 

  27. 27.

    Glatz M, Holzhacker C, Bichler B, Mastalir M, Stöger B, Mereiter K, Weil M, Veiros LF, Mösch-Zanetti NC, Kirchner K (2015) FeII carbonyl complexes featuring small to bulky PNP pincer ligands – facile substitution of κ2 P, N-bound PNP ligands by carbon monoxide. Eur J Inorg Chem 30:5053–5065

    Article  Google Scholar 

  28. 28.

    Bichler B, Glatz M, Stöger B, Mereiter K, Veiros LF, Kirchner K (2014) An iron(II) complex featuring κ3 and labile κ2-bound PNP pincer ligands—striking differences between CH2 and NH spacers. Dalton Trans 43:14517–14519

    CAS  Article  Google Scholar 

  29. 29.

    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    CAS  Article  Google Scholar 

  30. 30.

    Su H, Li Z, Huo Q, Guan J, Kan Q (2014) Immobilization of transition metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff base complexes onto graphene oxide as efficient and recyclable catalysts for epoxidation of styrene. RSC Adv 4:9990–9996

    CAS  Article  Google Scholar 

  31. 31.

    Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z (2009) Li storage properties of disordered graphene nanosheets. Chem Mater 21:3136–3142

    CAS  Article  Google Scholar 

  32. 32.

    Benito-Garagorri D, Becker E, Wiedermann J, Lackner W, Pollak M, Mereiter K, Kisala J, Kirchner K (2006) Achiral and chiral transition metal complexes with modularly designed tridentate PNP pincer-type ligands based on N-heterocyclic diamines. Organometallics 25:1900–1913

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council (EPSRC) for provision of a PhD studentship (S.B.T.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robin B. Bedford.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tailor, S.B., Bedford, R.B. Can Immobilization of an Inactive Iron Species Switch on Catalytic Activity in the Suzuki Reaction?. Catal Lett 150, 963–968 (2020). https://doi.org/10.1007/s10562-019-02978-2

Download citation

Keywords

  • Heterogeneous catalysis
  • Homogeneous catalysis
  • Mainly organic chemicals and reactions