Skip to main content
Log in

Iron Oxide as a Promoter for Toluene Catalytic Oxidation Over Fe–Mn/γ-Al2O3 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Fe–Mn/γ-Al2O3 catalysts that prepared by the wet-impregnation method were used to degrade toluene, a VOCs model compound. The results indicated that the 10Fe–15Mn/γ-Al2O3 exhibited 95% of toluene conversion as well as 95% of CO2 yield at 300 °C. The Fe–Mn/γ-Al2O3 showed a better toluene oxidation activity with respect to the Fe/γ-Al2O3 and Mn/γ-Al2O3. The introduction of Fe into the Mn/γ-Al2O3 resulted in higher surface area, higher Mn3+/(Mn3+ + Mn4+) ratio, lower reduction temperature, and homogenous distribution of Mn. Meanwhile, the co-exist of the Fe3+ and Mn3+ over the 10Fe–15Mn/γ-Al2O3 also favored for the oxygen transfer, which may enhance the catalytic oxidation performance. The initial toluene was adsorbed on surface of the catalysts and formed benzoyl oxide (C6H5–CH2–O), and then the benzoyl oxide (C6H5–CH2–O) was oxidized to benzaldehyde. Furthermore, the benzaldehyde was further oxidized to form benzoic acid that could be converted to CO2 and H2O.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kamal MS, Razzak SA, Hossain MM (2016) Atmos Environ 140:117–134

    CAS  Google Scholar 

  2. Kansal A (2009) J Hazard Mater 166:17–26

    CAS  PubMed  Google Scholar 

  3. Xu M, Yu D, Yao H, Liu X, Qiao Y (2011) Proc Combust Inst 33:1681–1697

    CAS  Google Scholar 

  4. Chen J, Chen X, Chen X, Xu W, Xu Z, Jia H, Chen J (2018) Appl Catal B 224:825–835

    CAS  Google Scholar 

  5. Zhang S, You J, Kennes C, Cheng Z, Ye J, Chen D, Chen J, Wang L (2018) Chem Eng J 334:2625–2637

    CAS  Google Scholar 

  6. Han J, Liang Y, Hu J, Qin L, Street J, Lu Y, Yu F (2017) Energy Convers Manag 153:641–648

    CAS  Google Scholar 

  7. Han J, Zhang L, Kim HJ, Kasadani Y, Li L, Shimizu T (2018) Fuel Process Technol 176:15–20

    CAS  Google Scholar 

  8. Zhang Q, Wu L, Fang X, Liu M, Zhang J, Shao M, Lu S, Mao H (2018) Sci Total Environ 624:878–886

    CAS  PubMed  Google Scholar 

  9. Zhang X, Gao B, Creamer AE, Cao C, Li Y (2017) J Hazard Mater 338:102–123

    CAS  PubMed  Google Scholar 

  10. Dai C, Zhou Y, Peng H, Huang S, Qin P, Zhang J, Yang Y, Luo L, Zhang X (2018) J Ind Eng Chem 62:106–119

    CAS  Google Scholar 

  11. Qin L, Han J, Zhan Y, Chen W, Kim H (2016) Energy Fuels 30:544–550

    CAS  Google Scholar 

  12. Qin L, Han J, Zhao B, Chen W, Xing F (2018) Waste Manag Res 36:1073–1082

    CAS  PubMed  Google Scholar 

  13. Qin L, Han J, Zhao B, Wang Y, Chen W, Xing F (2018) J Anal Appl Pyrol 136:132–145

    CAS  Google Scholar 

  14. Qin L, Xing F, Zhao B, Chen W, Han J (2018) Chemosphere 212:200–208

    CAS  PubMed  Google Scholar 

  15. Mustafa MF, Fu X, Liu Y, Abbas Y, Wang H, Lu W (2018) J Hazard Mater 347:317–324

    CAS  PubMed  Google Scholar 

  16. Shayegan Z, Lee C-S, Haghighat F (2018) Chem Eng J 334:2408–2439

    CAS  Google Scholar 

  17. Chen J, Chen X, Xu W, Xu Z, Chen J, Jia H, Chen J (2017) Chem Eng J 330:281–293

    CAS  Google Scholar 

  18. Mirzaei A, Leonardi SG, Neri G (2016) Ceram Int 42:15119–15141

    CAS  Google Scholar 

  19. Du C, Lu S, Wang Q, Buekens AG, Ni M, Debecker DP (2018) Chem Eng J 334:519–544

    CAS  Google Scholar 

  20. Castaño MH, Molina R, Moreno S (2017) Mol Catal 443:117–124

    Google Scholar 

  21. Ren K, Song J, Song Y-H, Wang H, Liu Z, Liu Z-T, Jiang J, Liu Z-W (2017) J CO2 Util 22:63–70

    Google Scholar 

  22. Du J, Qu Z, Dong C, Song L, Qin Y, Huang N (2018) Appl Surf Sci 433:1025–1035

    CAS  Google Scholar 

  23. Zhang X, Junhui Y, Jing Y, Ting C, Bei X, Zhe L, Kunfeng Z, Ling Y, Dannong H (2018) Appl Catal A 566:104–112

    CAS  Google Scholar 

  24. Wang Y, Yang D, Li S, Zhang L, Zheng G, Guo L (2019) Chem Eng J 357:258–268

    CAS  Google Scholar 

  25. Hu J, Li WB, Liu RF (2018) Catal Today 314:147–153

    CAS  Google Scholar 

  26. Tang A, Hu L, Yang X, Jia Y, Zhang Y (2016) Catal Commun 82:41–45

    CAS  Google Scholar 

  27. Baldi M, Escribano VS, Amores JMG, Milella F, Busca G (1998) Appl Catal B Environ 17:175–182

    Google Scholar 

  28. Durán FG, Barbero BP, Cadús LE, Rojas C, Centeno MA, Odriozola JA (2009) Appl Catal B 92:194–201

    Google Scholar 

  29. Quiroga MMB, Barbero BP, Cadus LE (2014) Appl Catal A 474:26–33

    Google Scholar 

  30. Castaño MH, Molina R, Moreno S (2015) Appl Catal A 492:48–59

    Google Scholar 

  31. Pozan GS (2012) J Hazard Mater 221–222:124–130

    PubMed  Google Scholar 

  32. Esmaeilirad M, Zabihi M, Shayegan J, Khorasheh F (2017) J Hazard Mater 333:293–307

    CAS  PubMed  Google Scholar 

  33. Shu Y, Xu Y, Huang H, Ji J, Liang S, Wu M, Leung DYC (2018) Chemosphere 208:550–558

    CAS  PubMed  Google Scholar 

  34. Wang H, Lu Y, Han Y, Lu C, Wan H, Xu Z, Zheng S (2017) Appl Surf Sci 420:260–266

    CAS  Google Scholar 

  35. Ma WJ, Huang Q, Xu Y, Chen YW, Zhu SM, Shen SB (2013) Ceram Int 39:277–281

    CAS  Google Scholar 

  36. Chen C, Li Y, Ma W, Guo S, Wang Q, Li QX (2017) Sep Purif Technol 183:1–10

    CAS  Google Scholar 

  37. Wang X, Wu S, Zou W, Yu S, Gui K, Dong L (2016) Chin J Catal 37:1314–1323

    CAS  Google Scholar 

  38. Chen W, Li Z, Hu F, Qin L, Han J, Wu G (2018) Appl Surf Sci 439:75–81

    CAS  Google Scholar 

  39. Chen W, Luo J, Qin L, Han J (2015) J Environ Manag 164:146–150

    CAS  Google Scholar 

  40. Cao F, Su S, Xiang J, Wang P, Hu S, Sun L, Zhang A (2015) Fuel 139:232–239

    CAS  Google Scholar 

  41. Luo Y, Zheng Y, Zuo J, Feng X, Wang X, Zhang T, Zhang K, Jiang L (2018) J Hazard Mater 349:119–127

    CAS  PubMed  Google Scholar 

  42. Farmanzadeh D, Valipour A (2018) Appl Surf Sci 450:509–515

    CAS  Google Scholar 

  43. Sun H, Liu Z, Chen S, Quan X (2015) Chem Eng J 270:58–65

    CAS  Google Scholar 

  44. Long Y, Wu S, Xiao Y, Cui P, Zhou H (2018) J Clean Prod 181:784–793

    CAS  Google Scholar 

  45. Han J, Liang Y, Qin L, Zhao B, Wang H, Wang Y (2019) Catal Lett 149:3224–3237

    CAS  Google Scholar 

  46. Wang H, Han J, Bo Z, Qin L, Wang Y, Yu F (2019) Mol Catal 475:110486

    CAS  Google Scholar 

  47. Liao Y, Zhang X, Peng R, Zhao M, Ye D (2017) Appl Surf Sci 405:20–28

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Special Foundation of Hubei Province (Grant Nos. 2019ACA157, 2019AHB073 and 2019ZYYD060), China Postdoctoral Science Foundation (2018M642960), and Foundation for Outstanding Youth Innovative Research Groups of Higher Education Institution in Hubei Province (T201902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhao or Jun Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Huang, X., Zhao, B. et al. Iron Oxide as a Promoter for Toluene Catalytic Oxidation Over Fe–Mn/γ-Al2O3 Catalysts. Catal Lett 150, 802–814 (2020). https://doi.org/10.1007/s10562-019-02975-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02975-5

Keywords

Navigation