Skip to main content
Log in

Fabrication of La-Doped Bi2O3 Nanoparticles with Oxygen Vacancies for Improving Photocatalytic Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

La-doped Bi2O3 were prepared via a simple sol–gel method following a facile low temperature calcination process, and citric acid as an organic complexing agent. La3+ doping could not only create oxygen vacanices (OVs) on the surface of Bi2O3, but also as the efficient scavenger to capture photogenerated electrons. The novel x% La–Bi2O3 photocatalysts exhibited oxidation capacities for degrading azo dye methyl orange (MO) and colorless pollutant phenol, and 2% La–Bi2O3 sample showed the highest photocatalytic activity. The enhanced photocatalytic activity in MO and phenol photo-degradation were attributed to the strong synergistic effects of La3+-doping and oxygen vacancies (OVs), which La3+ ions capture, transfer, and release the photo-generated electrons for conversion from O2 to \( ^{ \cdot } O_{2}^{ - } \) to prevent the hot e of CB to jump into the level of OVs, thereby increase separation efficiencies of photo-generated electrons and holes. The present study may present a new perspective for the utilization of rare earth ion doping to improve the performance of other photocatalytic materials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brezesinski K, Ostermann R, Hartmann P, Perlich J, Brezesinski T (2010) Chem Mater 22:3079

    CAS  Google Scholar 

  2. Ai Z, Huang Y, Lee S, Zhang L (2011) J Alloys Compd 509:2044

    CAS  Google Scholar 

  3. Iyyapushpam S, Nishanthi ST, Pathinettam Padiyan D (2015) J Phys Chem Solids 81:74

    CAS  Google Scholar 

  4. Muruganandham M, Amutha R, Lee GJ, Hsieh SH, Wu JJ, Sillanpä M (2012) J Phys Chem C 116:12906

    CAS  Google Scholar 

  5. Xiao X, Hu R, Liu C, Xing C, Qian C, Zuo X, Nan J, Wang L (2013) Appl Catal B 140:433

    Google Scholar 

  6. Balachandran S, Swaminathan M (2012) J Phys Chem C 116:26306

    CAS  Google Scholar 

  7. Bian ZF, Zhu J, Wang SH, Cao Y, Qian XF, Li HX (2008) J Phys Chem C 112:6258

    CAS  Google Scholar 

  8. Ge M, Li YF, Liu L, Zhou Z, Chen W (2011) J Phys Chem C 115:5220

    CAS  Google Scholar 

  9. Cong YQ, Wang J, Jin H, Feng X, Wang Q, Ji Y, Zhang Y (2016) Ind Eng Chem Res 55:1221

    CAS  Google Scholar 

  10. Zhang JF, Hu YF, Jiang XL, Chen SF, Meng SG, Fu XL (2014) J Hazard Mater 280:713

    CAS  PubMed  Google Scholar 

  11. Cheng LJ, Kang Y (2013) Mater Lett 97:125

    CAS  Google Scholar 

  12. Lopes OF, Carvalho KTG, Avansi W, Ribeiro C (2017) J Phys Chem C 121:13747

    CAS  Google Scholar 

  13. Guo J, Liu Y, Hao Y, Li Y, Wang X, Liu R, Li F (2018) Appl Catal B 224:841

    CAS  Google Scholar 

  14. Anandan S, Lee GJ, Chen PK, Fan C, Wu JJ (2010) Ind Eng Chem Res 49:9729

    CAS  Google Scholar 

  15. Li YT, Zhang ZF, Zhang YY, Sun XG, Zhang JM, Wang CH (2014) Ceram Int 40:13275

    CAS  Google Scholar 

  16. Sudrajat Hanggara (2017) Superlattice Microst 109:229

    CAS  Google Scholar 

  17. Chen Y, Zhang Y, Luo L, Shi Y, Wang S, Li L, Long Y, Jiang F (2018) Ceram Int 44:2178

    CAS  Google Scholar 

  18. Suriye K, Praserthdam P, Jongsomjit B (2007) Appl Surf Sci 253:3849

    CAS  Google Scholar 

  19. Xu A, Gao Y, Liu H (2002) J Catal 207:151

    CAS  Google Scholar 

  20. He RX, Jiang HQ, Wu F, Zhi KD, Wang N, Zhou CL (2014) Chem Pap 68:1049

    CAS  Google Scholar 

  21. Wang J, Liu P, Fu X, Li Z, Han W, Wang X (2009) Langmuir 25:1218

    CAS  PubMed  Google Scholar 

  22. Ho CC, Kang F, Chang GM, You SJ, Wang YF (2019) Appl Surf Sci 465:31

    CAS  Google Scholar 

  23. Huang Y, Cao JJ, Kang F, You SJ, Chang CW, Wang YF (2017) Aerosol Air Qual Res 17:2555

    CAS  Google Scholar 

  24. Ali Imran Vaizogullar (2018) J Electron Mater 47:6751

    Google Scholar 

  25. Bilal Tahir M, Sagir M (2019) Sep Purif Technol 209:94

    CAS  Google Scholar 

  26. Zhang J, Zhao Z, Wang X, Yu T, Guan J, Yu Z, Li Z, Zou Z (2010) J Phys Chem C 114:18396

    CAS  Google Scholar 

  27. Zhang B, Li D, Wang XY (2010) Catal Today 158:348

    CAS  Google Scholar 

  28. Yang B, Shen YS, Su Y, Li PW, Zeng YW, Shen SB (2017) Catal Commun 94:47

    CAS  Google Scholar 

  29. Chen T, Hao Q, Yang W, Xie C, Chen D, Ma C, Yao W, Zhu Y (2018) Appl Catal B 237:442

    CAS  Google Scholar 

  30. Zhang J, Gao Y, Jia X, Wang J, Chen Z, Xu Y (2018) Sol Energy Mater Sol C 182:113

    CAS  Google Scholar 

  31. Wang J, Xia Y, Dong Y, Chen R, Xiang L, Komarneni S (2016) Appl Catal B 192:8

    CAS  Google Scholar 

  32. Wang H, Yong D, Chen S, Jiang SL, Zhang XD, Shao W, Zhang Q, Yan WS, Pan BC, Xie Y (2018) J Am Chem Soc 140:1760

    CAS  PubMed  Google Scholar 

  33. Yu SX, Zhang YH, Dong F, Li M, Zhang TR, Huang HW (2018) Appl Catal B 226:441

    CAS  Google Scholar 

  34. Zhu W, Jin J, Chen X, Li C, Wang T, Tsang CW (2018) Environ Sci Pollut R 25:5643

    CAS  Google Scholar 

  35. Bai J, Wang L, Wang YJ, Yao WQ, Zhu YF (2014) Appl Catal B 152:262

    Google Scholar 

  36. Song C, Wang X, Zhang J, Chen X, Li C (2017) Appl Surf Sci 425:788

    CAS  Google Scholar 

  37. Yao XX, Liu XH (2014) J Hazard Mater 280:260

    CAS  PubMed  Google Scholar 

  38. Yang Y, Zhang T, Le L, Ruan X, Fang P, Pan C, Xiong R, Shi J, Wei J (2014) Sci Rep 4:7045

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang J, Liang Y, Li K, Yang G, Zhu Y, Liu S, Lei W (2018) Appl Surf Sci 458:769

    CAS  Google Scholar 

  40. Lu YG, Yang YC, Ye ZX, Liu SY (2012) J Inorg Mater 6:643

    Google Scholar 

  41. Zhou SY, Huang HD, Ji X, Yan DX, Zhong GJ, Hsiao BS, Li ZM (2016) ACS Appl Mater Interfaces 8:8096

    CAS  PubMed  Google Scholar 

  42. Tian F, Zhu RS, Song KL, Ouyang F, Cao G (2015) Int J Hydrog Energ 40:2141

    CAS  Google Scholar 

  43. Xue S, He H, Fan Q, Yu C, Yang K, Huang W, Zhou Y, Xie Y (2017) J Environ Sci 60:70

    Google Scholar 

  44. Sharma R, Khanuja M, Sharma SN, Sinha OP (2017) Int J Hydrog Energ 42:20638

    CAS  Google Scholar 

  45. Jiang HY, Liu G, Li M, Liu J, Sun W, Ye J, Lin J (2015) Appl Catal B 163:267

    CAS  Google Scholar 

  46. Xiao X, Hu R, Liu C, Xing C, Qian C, Zuo X, Nan J, Wang L (2013) Appl Catal B 140:433

    Google Scholar 

  47. Liu J, Li X, Li R, Zhao Q, Ke J, Xiao H, Wang L, Liu S, Tade M, Wang S (2018) Appl Catal A 224:705

    CAS  Google Scholar 

  48. Yoon DY, Lim E, Kim YJ, Kim JH, Ryu T, Lee S, Cho BK, Nam IS (2014) J Catal 319:182

    CAS  Google Scholar 

  49. Kong M, Li YZ, Chen X, Tian TT, Fang PF, Zheng F, Zhao XJ (2011) J Am Chem Soc 133:16414

    CAS  PubMed  Google Scholar 

  50. Wang HY, Wang GM, Ling YC, Lepert M, Wang CC, Zhang JZ, Li Y (2012) Nanoscale 2012(4):1463

    Google Scholar 

  51. Cai Y, Li D, Sun J, Chen M, Li Y, Zou Z, Zhang H, Xu H, Xia D (2018) Appl Surf Sci 439:697

    CAS  Google Scholar 

  52. Granados BL, Tovar RS, Ramon M, Domene F, Anton JG (2016) Sol Energ Mater Sol C 153:68

    Google Scholar 

  53. Xu HY, Huang YH, Liu S, Xu KW, Ma F, Chu PK (2016) RSC Adv 6:79383

    CAS  Google Scholar 

  54. Li S, Zhang J, Chen XB, Feng ZC, Li C (2017) Mater Res Bull 94:127

    CAS  Google Scholar 

  55. Zhang YF, Zhu GQ, Hojamberdiev M, Gao JZ, Hao J, Zhou JP, Liu P (2016) Appl Surf Sci 371:231–241

    CAS  Google Scholar 

  56. Rao F, Zhu GQ, Hojamberdiev M, Zhang WB, Li SP, Gao JZ, Zhang FC, Huang Y, Huang Y (2019) J Phys Chem C 123:16268

    CAS  Google Scholar 

  57. Liu YB, Zhu GQ, Gao JZ, Zhu RL, Hojamberdiev M, Wang CH, Wei XM, Liu P (2017) Appl Catal B 205:421

    CAS  Google Scholar 

  58. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) J Mater Chem A 2:637

    CAS  Google Scholar 

  59. Hao Q, Wang R, Lu H, Ca Xie, Ao W, Chen D, Ma C, Yao W, Zhu Y (2017) Appl Catal B 219:63

    CAS  Google Scholar 

  60. Tan CW, Zhu GQ, Hojamberdiev M, Sannegowda Lokesh K, Luo XC, Jin L, Zhou JP, Liu P (2014) J Hazard Mater 278:572

    CAS  PubMed  Google Scholar 

  61. Lv YH, Zhu YY, Zhu YF (2013) J Phys Chem C 117:18520

    CAS  Google Scholar 

  62. Zhang RD, Alamdari HS, Kaliaguine S (2006) J Catal 242:241

    CAS  Google Scholar 

  63. Ghasemi S, Rahimnejad S, Setayesh SR, Rohani S, Golami MR (2009) J Hazard Mater 172:1573

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11604222), and the Liaoning Provincial Natural Science Foundation of China (Grant No. 201601155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanyu Quan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Quan, S., Shi, X. et al. Fabrication of La-Doped Bi2O3 Nanoparticles with Oxygen Vacancies for Improving Photocatalytic Activity. Catal Lett 150, 640–651 (2020). https://doi.org/10.1007/s10562-019-02970-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02970-w

Keywords

Navigation