Promoter Effects on Catalyst Selectivity and Stability for Propylene Partial Oxidation to Acrolein

Abstract

Highly dispersed silica-supported CuOx/SiO2 catalysts were synthesized via solution-phase deposition and studied for their activity, selectivity, and stability in catalyzing the selective oxidation of propylene to acrolein. Strategies for ensuring high metal dispersion included controlling the surface density of silanols (via covalent silanol-capping) or by pre-installing different “promoter” transition metals at submonolayer coverages. A comparison of the effect of first row transition metal promoters showed that V and Cr significantly boost catalyst performance and stabilize CuOx sites against aggregation.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Belin S, Bracey CL, Briois V, Elllis PR, Hutchings GJ, Hyde TI, Sankar G (2013) Catal Sci Technol 3:2944–2957

    CAS  Google Scholar 

  2. 2.

    Baussart H, Delobel R, Le Bras M, Leroy JM (1979) J Chem Soc, Faraday Trans 1(75):1337–1345

    Google Scholar 

  3. 3.

    Liu CH, Lai NC, Lee JF, Chen CS, Yang CM (2014) J Catal 316:231–239

    CAS  Google Scholar 

  4. 4.

    Imachi M, Kuczkowski RL, Groves JT, Cant NW (1983) J Catal 82:355–364

    Google Scholar 

  5. 5.

    Choi HS, Lin JT, Kuczkowski RL (1986) J Catal 99:72–78

    CAS  Google Scholar 

  6. 6.

    Horváth B, Soták T, Hronec M (2011) Appl Catal A 405:18–24

    Google Scholar 

  7. 7.

    Albonetti S, Cavani F, Trifirò F (1996) Catal Rev 38(4):413–438

    CAS  Google Scholar 

  8. 8.

    Tüysüz H, Galilea JL, Schüth F (2009) Catal Lett 131:49–53

    Google Scholar 

  9. 9.

    Schuh K, Kleist W, Høj M, Trouillet V, Beato P, Jensen AD, Grunwaldt JD (2015) Catalysts 5(3):1554–1573

    CAS  Google Scholar 

  10. 10.

    Zhai Z, Wütschert M, Licht RB, Bell AT (2016) Catal Today 261:146–153

    CAS  Google Scholar 

  11. 11.

    Pudar S, Oxgaard J, Chenoweth K, van Duin ACT, Goddard WA (2007) J Phys Chem C 111:16405–16415

    CAS  Google Scholar 

  12. 12.

    Fierro JLG, Gambaro LA, Cooper TA, Kremenić G (1983) Appl Catal 6:363–378

    CAS  Google Scholar 

  13. 13.

    Panyad S, Jongpatiwut S, Sreethawong T, Rirksomboon T, Osuwan S (2011) Catal Today 174:59–64

    CAS  Google Scholar 

  14. 14.

    Labaki M, Lamonier JF, Siffert S, Zhilinskaya EA, Aboukaïs A (2003) Coll Surf A 227:63–75

    CAS  Google Scholar 

  15. 15.

    Inui T, Ueda T, Suehiro M (1980) J Catal 65:166–173

    CAS  Google Scholar 

  16. 16.

    Grasselli RK (2002) Top Catal 21(1–3):79–88

    CAS  Google Scholar 

  17. 17.

    Bettahar MM, Costentin G, Savary L, Lavalley JC (1996) Appl Catal A 145:1–48

    CAS  Google Scholar 

  18. 18.

    Bracey CL, Carley AF, Edwards JK, Ellis PR, Hutchings GJ (2011) Catal Sci Technol 1:76–85

    CAS  Google Scholar 

  19. 19.

    Wang X, Zhang Q, Guo Q, Lou Y, Yang L, Wang Y (2004) Chem Commun 1396:1397. https://doi.org/10.1039/B402839B

    Article  Google Scholar 

  20. 20.

    Krenzke LD, Keulks GW (1980) J Catal 61:316–325

    CAS  Google Scholar 

  21. 21.

    Forzatti P, Villa PL (1982) J Catal 76:188–207

    CAS  Google Scholar 

  22. 22.

    Allen M, Betteley R, Bowker M, Hutchings GJ (1991) Catal Today 9:97–104

    CAS  Google Scholar 

  23. 23.

    Yang L, He J, Zhang Q, Wang Y (2010) J Catal 276:76–84

    CAS  Google Scholar 

  24. 24.

    Bøyesen KL, Kristiansen T, Mathisen K (2014) Phys Chem Chem Phys 16:20451–20463

    PubMed  Google Scholar 

  25. 25.

    Bøyesen KL, Kristiansen T, Mathisen K (2015) Catal Today 254:21–28

    Google Scholar 

  26. 26.

    Bøyesen KL, Mathisen K (2014) Catal Today 229:14–22

    Google Scholar 

  27. 27.

    Wojciechowska M, Haber J, Łomnicki S, Stoch J (1999) J Mol Catal A 141:155–170

    CAS  Google Scholar 

  28. 28.

    Xanthopoulou G, Vekinis G (1998) Appl Catal B 19:37–44

    CAS  Google Scholar 

  29. 29.

    Dekker NJJ, Hoorn JAA, Stegenga S, Kapteijn F, Moulijn FA (1992) Am Inst Chem Eng J 38(3):385–396

    CAS  Google Scholar 

  30. 30.

    Khanmamedov TK, Kalinkin AV, Kundo NN, Novopashina VM (1988) React Kinet Catal Lett 37(1):83–88

    CAS  Google Scholar 

  31. 31.

    Keranen J, Guimon C, Liskola E, Auroux A, Niinisto L (2003) J Phys Chem B 107(39):10773–10784

    CAS  Google Scholar 

  32. 32.

    Liu YM, Feng WL, Wang LC, Cao Y, Dai WL, He HY, Fan KN (2006) Catal Lett 106(3–4):145–152

    CAS  Google Scholar 

  33. 33.

    Schweitzer NM, Hu B, Das U, Kim H, Greeley J, Curtiss LA, Stair PC, Miller JT, Hock AS (2014) ACS Catal 4:1091–1098

    CAS  Google Scholar 

  34. 34.

    Hu B, Getsoian A, Schweitzer NM, Das U, Kim H, Niklas J, Poluektov O, Curtiss LA, Stair PC, Miller JT, Hock AS (2015) J Catal 322:24–37

    CAS  Google Scholar 

  35. 35.

    Camacho-Bunquin J, Ferrandon M, Sohn H, Yang D, Liu C, Ignacio-de Leon PA, Perras FA, Pruski M, Stair PC, Delferro M (2018) J Am Chem Soc 140:3940–3951

    CAS  PubMed  Google Scholar 

  36. 36.

    Song W, Perez Ferrandez DM, van Haandel L, Liu P, Nijhuis TA (2015) hensen EJM. ACS Catal 5:1100–1111

    CAS  Google Scholar 

  37. 37.

    Deng Y, Handoko AD, Du Y, Xi S, Yeo BS (2016) ACS Catal 6:2473–2481

    CAS  Google Scholar 

  38. 38.

    Lgarashi K, Tajiri K, Tai Y, Tanemura S (1993) Suppl Z Phys D26:S207

    Google Scholar 

  39. 39.

    Owens L, Tillotson TM, Hair IM (1995) J Non-Cryst Sol 186:177–183

    CAS  Google Scholar 

  40. 40.

    Jehng JM, Wachs IE, Weckuysen BM, Schoonheydt RA (1995) J Chem Soc Faraday Trans 91(5):953–961

    CAS  Google Scholar 

  41. 41.

    Kim DS, Tatibouet JM, Wachs IE (1992) J Catal 136:209–221

    CAS  Google Scholar 

  42. 42.

    Weckhuysen BM, Wachs IE (1996) J Phys Chem 100:14437–14442

    CAS  Google Scholar 

  43. 43.

    Strunk J, Baňares MA, Wachs IE (2017) Top Catal 60:1577–1617

    CAS  Google Scholar 

  44. 44.

    Lee EL, Wachs IE (2007) J Phys Chem C 111:14410–14425

    CAS  Google Scholar 

  45. 45.

    Xie S, Iglesia E, Bell AT (2001) J Phys Chem B 105:5144–5152

    CAS  Google Scholar 

  46. 46.

    Niu X, Zhao T, Yuan F, Zhu Y (2015) Sci Rep 5:9153

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Chu H, Yang L, Zhang Q, Wang Y (2006) J Catal 241:225–228

    CAS  Google Scholar 

  48. 48.

    Arena F, Fruteri F, Parmaliana A (1999) Catal Lett 60:59–63

    CAS  Google Scholar 

  49. 49.

    Bugrova TA, Litvyakova NN, Mamontov GV (2015) Kinet Catal 56(6):746–752

    Google Scholar 

  50. 50.

    Hu L, Yue B, Chen X, He H (2014) Catal Commun 43:179–183

    CAS  Google Scholar 

  51. 51.

    Nauert SL, Schax F, Limberg C, Notestein JM (2016) J Catal 341:180–190

    CAS  Google Scholar 

  52. 52.

    Barton DG, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) J Phys Chem B 103:630–640

    CAS  Google Scholar 

  53. 53.

    Gao X, Wachs IE (2000) J Phys Chem B 104:261–1268

    Google Scholar 

  54. 54.

    Pakharukova VP, Moroz EM, Zyuzin DA, Ishchenko AV, Dolgikh LY, Strizhak PE (2015) J Phys Chem C 119:28828–28835

    CAS  Google Scholar 

  55. 55.

    Vilella L, Studt F (2016) Eur J Inorg Chem 2016:1514–1520

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Department of Energy, Laboratory Directed Research and Development funding at Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This research used resources of the Advanced Photon Source and the Center for Nanoscale Materials, U.S. Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Magali Ferrandon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1865 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ignacio-de Leon, P.A., Ferrandon, M., Savereide, L.M. et al. Promoter Effects on Catalyst Selectivity and Stability for Propylene Partial Oxidation to Acrolein. Catal Lett 150, 826–836 (2020). https://doi.org/10.1007/s10562-019-02969-3

Download citation

Keywords

  • Acrolein
  • Copper
  • Oxidation
  • Promoter
  • Propylene