Advertisement

Promoter Effects on Catalyst Selectivity and Stability for Propylene Partial Oxidation to Acrolein

  • Patricia Anne Ignacio-de Leon
  • Magali FerrandonEmail author
  • Louisa M. Savereide
  • Scott L. Nauert
  • Jorge Moncada
  • Rachel Klet
  • Karena Chapman
  • Massimiliano Delferro
  • Jeffrey Camacho-Bunquin
  • Carlos A. Carrero
  • Justin M. Notestein
  • SonBinh Nguyen
Article

Abstract

Highly dispersed silica-supported CuOx/SiO2 catalysts were synthesized via solution-phase deposition and studied for their activity, selectivity, and stability in catalyzing the selective oxidation of propylene to acrolein. Strategies for ensuring high metal dispersion included controlling the surface density of silanols (via covalent silanol-capping) or by pre-installing different “promoter” transition metals at submonolayer coverages. A comparison of the effect of first row transition metal promoters showed that V and Cr significantly boost catalyst performance and stabilize CuOx sites against aggregation.

Graphic Abstract

Keywords

Acrolein Copper Oxidation Promoter Propylene 

Notes

Acknowledgements

This work is supported by the Department of Energy, Laboratory Directed Research and Development funding at Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This research used resources of the Advanced Photon Source and the Center for Nanoscale Materials, U.S. Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Supplementary material

10562_2019_2969_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1865 kb)

References

  1. 1.
    Belin S, Bracey CL, Briois V, Elllis PR, Hutchings GJ, Hyde TI, Sankar G (2013) Catal Sci Technol 3:2944–2957CrossRefGoogle Scholar
  2. 2.
    Baussart H, Delobel R, Le Bras M, Leroy JM (1979) J Chem Soc, Faraday Trans 1(75):1337–1345CrossRefGoogle Scholar
  3. 3.
    Liu CH, Lai NC, Lee JF, Chen CS, Yang CM (2014) J Catal 316:231–239CrossRefGoogle Scholar
  4. 4.
    Imachi M, Kuczkowski RL, Groves JT, Cant NW (1983) J Catal 82:355–364CrossRefGoogle Scholar
  5. 5.
    Choi HS, Lin JT, Kuczkowski RL (1986) J Catal 99:72–78CrossRefGoogle Scholar
  6. 6.
    Horváth B, Soták T, Hronec M (2011) Appl Catal A 405:18–24CrossRefGoogle Scholar
  7. 7.
    Albonetti S, Cavani F, Trifirò F (1996) Catal Rev 38(4):413–438CrossRefGoogle Scholar
  8. 8.
    Tüysüz H, Galilea JL, Schüth F (2009) Catal Lett 131:49–53CrossRefGoogle Scholar
  9. 9.
    Schuh K, Kleist W, Høj M, Trouillet V, Beato P, Jensen AD, Grunwaldt JD (2015) Catalysts 5(3):1554–1573CrossRefGoogle Scholar
  10. 10.
    Zhai Z, Wütschert M, Licht RB, Bell AT (2016) Catal Today 261:146–153CrossRefGoogle Scholar
  11. 11.
    Pudar S, Oxgaard J, Chenoweth K, van Duin ACT, Goddard WA (2007) J Phys Chem C 111:16405–16415CrossRefGoogle Scholar
  12. 12.
    Fierro JLG, Gambaro LA, Cooper TA, Kremenić G (1983) Appl Catal 6:363–378CrossRefGoogle Scholar
  13. 13.
    Panyad S, Jongpatiwut S, Sreethawong T, Rirksomboon T, Osuwan S (2011) Catal Today 174:59–64CrossRefGoogle Scholar
  14. 14.
    Labaki M, Lamonier JF, Siffert S, Zhilinskaya EA, Aboukaïs A (2003) Coll Surf A 227:63–75CrossRefGoogle Scholar
  15. 15.
    Inui T, Ueda T, Suehiro M (1980) J Catal 65:166–173CrossRefGoogle Scholar
  16. 16.
    Grasselli RK (2002) Top Catal 21(1–3):79–88CrossRefGoogle Scholar
  17. 17.
    Bettahar MM, Costentin G, Savary L, Lavalley JC (1996) Appl Catal A 145:1–48CrossRefGoogle Scholar
  18. 18.
    Bracey CL, Carley AF, Edwards JK, Ellis PR, Hutchings GJ (2011) Catal Sci Technol 1:76–85CrossRefGoogle Scholar
  19. 19.
    Wang X, Zhang Q, Guo Q, Lou Y, Yang L, Wang Y (2004) Chem Commun 1396:1397.  https://doi.org/10.1039/B402839B CrossRefGoogle Scholar
  20. 20.
    Krenzke LD, Keulks GW (1980) J Catal 61:316–325CrossRefGoogle Scholar
  21. 21.
    Forzatti P, Villa PL (1982) J Catal 76:188–207CrossRefGoogle Scholar
  22. 22.
    Allen M, Betteley R, Bowker M, Hutchings GJ (1991) Catal Today 9:97–104CrossRefGoogle Scholar
  23. 23.
    Yang L, He J, Zhang Q, Wang Y (2010) J Catal 276:76–84CrossRefGoogle Scholar
  24. 24.
    Bøyesen KL, Kristiansen T, Mathisen K (2014) Phys Chem Chem Phys 16:20451–20463CrossRefGoogle Scholar
  25. 25.
    Bøyesen KL, Kristiansen T, Mathisen K (2015) Catal Today 254:21–28CrossRefGoogle Scholar
  26. 26.
    Bøyesen KL, Mathisen K (2014) Catal Today 229:14–22CrossRefGoogle Scholar
  27. 27.
    Wojciechowska M, Haber J, Łomnicki S, Stoch J (1999) J Mol Catal A 141:155–170CrossRefGoogle Scholar
  28. 28.
    Xanthopoulou G, Vekinis G (1998) Appl Catal B 19:37–44CrossRefGoogle Scholar
  29. 29.
    Dekker NJJ, Hoorn JAA, Stegenga S, Kapteijn F, Moulijn FA (1992) Am Inst Chem Eng J 38(3):385–396CrossRefGoogle Scholar
  30. 30.
    Khanmamedov TK, Kalinkin AV, Kundo NN, Novopashina VM (1988) React Kinet Catal Lett 37(1):83–88CrossRefGoogle Scholar
  31. 31.
    Keranen J, Guimon C, Liskola E, Auroux A, Niinisto L (2003) J Phys Chem B 107(39):10773–10784CrossRefGoogle Scholar
  32. 32.
    Liu YM, Feng WL, Wang LC, Cao Y, Dai WL, He HY, Fan KN (2006) Catal Lett 106(3–4):145–152CrossRefGoogle Scholar
  33. 33.
    Schweitzer NM, Hu B, Das U, Kim H, Greeley J, Curtiss LA, Stair PC, Miller JT, Hock AS (2014) ACS Catal 4:1091–1098CrossRefGoogle Scholar
  34. 34.
    Hu B, Getsoian A, Schweitzer NM, Das U, Kim H, Niklas J, Poluektov O, Curtiss LA, Stair PC, Miller JT, Hock AS (2015) J Catal 322:24–37CrossRefGoogle Scholar
  35. 35.
    Camacho-Bunquin J, Ferrandon M, Sohn H, Yang D, Liu C, Ignacio-de Leon PA, Perras FA, Pruski M, Stair PC, Delferro M (2018) J Am Chem Soc 140:3940–3951CrossRefGoogle Scholar
  36. 36.
    Song W, Perez Ferrandez DM, van Haandel L, Liu P, Nijhuis TA (2015) hensen EJM. ACS Catal 5:1100–1111CrossRefGoogle Scholar
  37. 37.
    Deng Y, Handoko AD, Du Y, Xi S, Yeo BS (2016) ACS Catal 6:2473–2481CrossRefGoogle Scholar
  38. 38.
    Lgarashi K, Tajiri K, Tai Y, Tanemura S (1993) Suppl Z Phys D26:S207Google Scholar
  39. 39.
    Owens L, Tillotson TM, Hair IM (1995) J Non-Cryst Sol 186:177–183CrossRefGoogle Scholar
  40. 40.
    Jehng JM, Wachs IE, Weckuysen BM, Schoonheydt RA (1995) J Chem Soc Faraday Trans 91(5):953–961CrossRefGoogle Scholar
  41. 41.
    Kim DS, Tatibouet JM, Wachs IE (1992) J Catal 136:209–221CrossRefGoogle Scholar
  42. 42.
    Weckhuysen BM, Wachs IE (1996) J Phys Chem 100:14437–14442CrossRefGoogle Scholar
  43. 43.
    Strunk J, Baňares MA, Wachs IE (2017) Top Catal 60:1577–1617CrossRefGoogle Scholar
  44. 44.
    Lee EL, Wachs IE (2007) J Phys Chem C 111:14410–14425CrossRefGoogle Scholar
  45. 45.
    Xie S, Iglesia E, Bell AT (2001) J Phys Chem B 105:5144–5152CrossRefGoogle Scholar
  46. 46.
    Niu X, Zhao T, Yuan F, Zhu Y (2015) Sci Rep 5:9153CrossRefGoogle Scholar
  47. 47.
    Chu H, Yang L, Zhang Q, Wang Y (2006) J Catal 241:225–228CrossRefGoogle Scholar
  48. 48.
    Arena F, Fruteri F, Parmaliana A (1999) Catal Lett 60:59–63CrossRefGoogle Scholar
  49. 49.
    Bugrova TA, Litvyakova NN, Mamontov GV (2015) Kinet Catal 56(6):746–752CrossRefGoogle Scholar
  50. 50.
    Hu L, Yue B, Chen X, He H (2014) Catal Commun 43:179–183CrossRefGoogle Scholar
  51. 51.
    Nauert SL, Schax F, Limberg C, Notestein JM (2016) J Catal 341:180–190CrossRefGoogle Scholar
  52. 52.
    Barton DG, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) J Phys Chem B 103:630–640CrossRefGoogle Scholar
  53. 53.
    Gao X, Wachs IE (2000) J Phys Chem B 104:261–1268Google Scholar
  54. 54.
    Pakharukova VP, Moroz EM, Zyuzin DA, Ishchenko AV, Dolgikh LY, Strizhak PE (2015) J Phys Chem C 119:28828–28835CrossRefGoogle Scholar
  55. 55.
    Vilella L, Studt F (2016) Eur J Inorg Chem 2016:1514–1520CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Patricia Anne Ignacio-de Leon
    • 1
  • Magali Ferrandon
    • 2
    Email author
  • Louisa M. Savereide
    • 3
  • Scott L. Nauert
    • 3
  • Jorge Moncada
    • 4
  • Rachel Klet
    • 2
  • Karena Chapman
    • 5
  • Massimiliano Delferro
    • 2
  • Jeffrey Camacho-Bunquin
    • 2
  • Carlos A. Carrero
    • 4
  • Justin M. Notestein
    • 3
  • SonBinh Nguyen
    • 6
  1. 1.Advanced Materials DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Chemical Sciences and Engineering DivisionArgonne National LaboratoryArgonneUSA
  3. 3.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA
  4. 4.Department of Chemical EngineeringAuburn UniversityAuburnUSA
  5. 5.X-ray Sciences DivisionAdvanced Photon Source, Argonne National LaboratoryArgonneUSA
  6. 6.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations