Skip to main content

Advertisement

Log in

Selective Hydrodeoxygenation of Guaiacol to Cyclohexanol Catalyzed by Nanoporous Nickel

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cyclohexanol is an important feedstock in the chemical industry and the selective hydrodeoxygenation of lignin-derived guaiacol to cyclohexanol have gained increasing research attention in recent years. In this work, a series of nanoporous metal catalysts were employed for the hydrodeoxygenation of guaiacol and nanoporous Ni (NP-Ni) exhibited high catalytic performance for the preparation of cyclohexanol. With water as solvent, 100% conversion of guaiacol and over 90% selectivity to cyclohexanol were achieved at 180 °C and 2 MPa for 4 h. In order to further promote the stability of NP-Ni, induction melting, vacuum arc melting and mechanical alloying were separately employed for the preparation of NiAl precursor alloy. Mechanical alloying seemed to be an effective method for the alloying process and the as-prepared NP-Ni could keep almost stable after 10 times recycling. Furthermore, the reaction mechanism was investigated with NP-Ni for guaiacol hydrodeoxygenation. Scanning electron microscope (SEM), Brunauer–Emmett–Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron micrographs (TEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD) were employed for the characterization of NiAl alloy and the optimal preparation methods of NP-Ni were acquired according to the characterization results.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Climent MJ, Corma A, Iborra S (2011) Chem Rev 111:1072–1133

    CAS  PubMed  Google Scholar 

  2. Wu S-K, Lai P-C, Lin Y-C (2014) Catal Lett 144:878–889

    CAS  Google Scholar 

  3. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Chem Rev 115:11559–11624

    CAS  PubMed  Google Scholar 

  4. Aqsha A, Katta L, Mahinpey N (2015) Catal Lett 145:1351–1363

    CAS  Google Scholar 

  5. Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A (2010) Green Chem 12:972–978

    CAS  Google Scholar 

  6. Mao J, Zhou J, Xia Z, Wang Z, Xu Z, Xu W, Yan P, Liu K, Guo X, Zhang ZC (2016) ACS Catal 7:695–705

    Google Scholar 

  7. El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Polym Degrad Stab 94:1632–1638

    Google Scholar 

  8. Buranov AU, Mazza G (2008) Ind Crop Prod 28:237–259

    CAS  Google Scholar 

  9. Dongil AB, Ghampson IT, García R, Fierro JLG, Escalona N (2016) RSC Adv 6:2611–2623

    CAS  Google Scholar 

  10. Ishikawa M, Tamura M, Nakagawa Y, Tomishige K (2016) Appl Catal B 182:193–203

    CAS  Google Scholar 

  11. Lu M, Du H, Wei B, Zhu J, Li M, Shan Y, Shen J, Song C (2017) Ind Eng Chem Res 56:12070–12079

    CAS  Google Scholar 

  12. Nimmanwudipong T, Aydin C, Lu J, Runnebaum RC, Brodwater KC, Browning ND, Block DE, Gates BC (2012) Catal Lett 142:1190–1196

    CAS  Google Scholar 

  13. Qiu S, Xu Y, Weng Y, Ma L, Wang T (2016) Catalysts 6:134–148

    Google Scholar 

  14. Fang H, Zheng J, Luo X, Du J, Roldan A, Leoni S, Yuan Y (2017) Appl Catal A 529:20–31

    CAS  Google Scholar 

  15. Hong Y-K, Lee D-W, Eom H-J, Lee K-Y (2014) Appl Catal B 150–151:438–445

    Google Scholar 

  16. Wu S-K, Lai P-C, Lin Y-C, Wan H-P, Lee H-T, Chang Y-H (2013) ACS Sustain Chem Eng 1:349–358

    CAS  Google Scholar 

  17. Yang D, Wu T, Chen C, Guo W, Liu H, Han B (2017) Green Chem 19:311–318

    CAS  Google Scholar 

  18. Pal N, Pramanik M, Bhaumik A, Ali M (2014) J Mol Catal A 392:299–307

    CAS  Google Scholar 

  19. Yao W, Chen Y, Min L, Fang H, Yan Z, Wang H, Wang J (2006) J Mol Catal A 246:162–166

    CAS  Google Scholar 

  20. Liu X, Xu L, Xu G, Jia W, Ma Y, Zhang Y (2016) ACS Catal 6:7611–7620

    CAS  Google Scholar 

  21. Liu X, An W, Wang Y, Turner CH, Resasco DE (2018) Catal Sci Technol 8:2146–2158

    CAS  Google Scholar 

  22. Sun J, Karim AM, Zhang H, Kovarik L, Li XS, Hensley AJ, McEwen J-S, Wang Y (2013) J Catal 306:47–57

    CAS  Google Scholar 

  23. Zhao HY, Li D, Bui P, Oyama ST (2011) Appl Catal A 391:305–310

    CAS  Google Scholar 

  24. Hellinger M, Carvalho HWP, Baier S, Wang D, Kleist W, Grunwaldt J-D (2015) Appl Catal A 490:181–192

    CAS  Google Scholar 

  25. Zhang X, Zhang Q, Chen L, Xu Y, Wang T, Ma L (2014) Chin J Catal 35:302–309

    Google Scholar 

  26. Lee CR, Yoon JS, Suh Y-W, Choi J-W, Ha J-M, Suh DJ, Park Y-K (2012) Catal Commun 17:54–58

    CAS  Google Scholar 

  27. Feitosa LF, Berhault G, Laurenti D, Davies TE, da Silva VT (2016) J Catal 340:154–165

    CAS  Google Scholar 

  28. Zhang X, Yan P, Zhao B, Liu K, Kung MC, Kung HH, Chen S, Zhang ZC (2019) ACS Catal 9:3551–3563

    CAS  Google Scholar 

  29. Wang X, Zhu S, Wang S, He Y, Liu Y, Wang J, Fan W, Lv Y (2019) RSC Adv 9:3868–3876

    CAS  Google Scholar 

  30. Vriamont CEJJ, Chen T, Romain C, Corbett P, Manageracharath P, Peet J, Conifer CM, Hallett JP, Britovsek GJP (2019) ACS Catal 9:2345–2354

    CAS  Google Scholar 

  31. Shangguan J, Pfriem N, Chin Y-H (2019) J Catal 370:186–199

    CAS  Google Scholar 

  32. Nakagawa Y, Ishikawa M, Tamura M, Tomishige K (2014) Green Chem 16:2197–2203

    CAS  Google Scholar 

  33. Xu G-Y, Guo J-H, Qu Y-C, Zhang Y, Fu Y, Guo Q-X (2016) Green Chem 18:5510–5517

    CAS  Google Scholar 

  34. Long J, Shu S, Wu Q, Yuan Z, Wang T, Xu Y, Zhang X, Zhang Q, Ma L (2015) Energy Conv Manag 105:570–577

    CAS  Google Scholar 

  35. Zhou M, Ye J, Liu P, Xu J, Jiang J (2017) ACS Sustain Chem Eng 5:8824–8835

    CAS  Google Scholar 

  36. Roldugina EA, Naranov ER, Maximov AL, Karakhanov EA (2018) Appl Catal A 553:24–35

    CAS  Google Scholar 

  37. Fujita T, Guan P, McKenna K, Lang X, Hirata A, Zhang L, Tokunaga T, Arai S, Yamamoto Y, Tanaka N, Ishikawa Y, Asao N, Yamamoto Y, Erlebacher J, Chen M (2012) Nat Mater 11:775–780

    CAS  PubMed  Google Scholar 

  38. de Castro IBD, Graça I, Rodríguez-García L, Kennema M, Rinaldi R, Meemken F (2018) Catal Sci Technol 8:3107–3114

    Google Scholar 

  39. Wang X, Rinaldi R (2012) Energy Environ Sci 5:8244–8260

    CAS  Google Scholar 

  40. Thompson ST, Lamb HH (2018) Appl Catal A 563:105–117

    CAS  Google Scholar 

  41. Han B, Bao Z, Liu T, Zhou H, Zhuang G, Zhong X, Deng S, Wang J (2017) ChemistrySelect 2:9599–9606

    CAS  Google Scholar 

  42. Escalona N, Aranzaez W, Leiva K, Martínez N, Pecchi G (2014) Appl Catal A 481:1–10

    CAS  Google Scholar 

  43. Sulman A, Mäki-Arvela P, Bomont L, Alda-Onggar M, Fedorov V, Russo V, Eränen K, Peurla M, Akhmetzyanova U, Skuhrovcová L, Tišler Z, Grénman H, Wärnå J, Murzin DY (2019) Catal Lett 149:2453–2467

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (DUT19LK29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeming Rong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Liu, X., Yu, G. et al. Selective Hydrodeoxygenation of Guaiacol to Cyclohexanol Catalyzed by Nanoporous Nickel. Catal Lett 150, 837–848 (2020). https://doi.org/10.1007/s10562-019-02967-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02967-5

Keywords

Navigation